Endorrhizal fungal symbiosis in aroids of the Western Ghats, southern India

Authors

  • Sivadas ANASWARA Bharathiar University, Department of Botany, Root and Soil Biology Laboratory, Coimbatore 641046, Tamilnadu (IN)
  • Vanaraja AJITHKUMAR Bharathiar University, Department of Botany, Root and Soil Biology Laboratory, Coimbatore 641046, Tamilnadu (IN)
  • Mayakrishnan BALACHANDAR Bharathiar University, Department of Botany, Root and Soil Biology Laboratory, Coimbatore 641046, Tamilnadu (IN)
  • Thangavelu MUTHUKUMAR Bharathiar University, Department of Botany, Root and Soil Biology Laboratory, Coimbatore 641046, Tamilnadu (IN)

DOI:

https://doi.org/10.55779/nsb15411651

Keywords:

AM fungi, Araceae, colonization, DSE fungi, FRE fungi

Abstract

Information of dark septate endophyte (DSE), arbuscular mycorrhizal (AM), and fine root endophyte (FRE) fungal symbioses of aroids in the Western Ghats region are very low. Therefore, we assessed the endorrhizal symbiosis in 25 aroid species belonging to 16 genera of Araceae from six different locations of the Western Ghats. The results revealed co-occurrence of the DSE and AM symbiosis in all the examined aroids, and FRE presence in seven aroids (Alocasia ´ amazonica, Alocasia sp., Anthurium andraeanum, Epipremnum aureum, Spathiphyllum sp., Syngonium podophyllum, and Zantedeschia aethiopica). We found variance in root length having AM (inter and intracellular hyphae, arbuscules, vesicles and arbusculate coils) and DSE (melanized septate hyphae, microsclerotia, and moniliform hyphae) fungal structures. Moreover, the AM fungal morphology of Arum-Paris type was widespread, and intermediate type morphology reported for the first time in five aroids. AM fungi colonized the roots of Philodendron xanadu the most, followed by DSE in Caladium bicolor, and FRE in Spathiphyllum sp. AM fungal spores were present in all aroid soils examined. The percentage of root length comprising FRE hyphae was significantly and positively correlated root length with FRE arbuscules, AM fungal spore numbers and total colonization. Our study revealed that, the aroids tend to form associations with various endorrhizal fungi. 

Metrics

Metrics Loading ...

References

Alexander T, Meier R, Toth R, Weber HC (1988). Dynamics of arbuscule development and degeneration in mycorrhizas of Triticum aestivum L. and Avena sativa L. with reference to Zea mays L. New Phytologist 110(3):363-370.

Bagyaraj DJ, Manjunath A, Patil RB (1979). Occurrence of vesicular-arbuscular mycorrhizas in some tropical aquatic plants. Transactions of the British Mycological Society 72(1):164-167. https://doi.org/10.1016/S0007-1536(79)80023-6

Balachandar M, Koshila Ravi R, Muthukumar T (2022). Fine root endophyte association in widely cultivated palms of southern India. Kavaka 58(3):48-53. https://doi.org/10.36460/Kavaka/58/3/2022/48-53

Barrow JR, Aaltonen RE (2001). Evaluation of the internal colonization of Atriplex canescens (Pursh) Nutt. roots by dark septate fungi and the influence of host physiological activity. Mycorrhiza 11(4):199-205. https://doi.org/10.1007/s005720100111

Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, … Zhang L (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation implications in abiotic stress tolerance. Frontiers in Plant Science 10:1068. https://doi.org/10.3389/fpls.2019.01068

Boyce PC, Croat TB (2011). The uberlist of araceae totals for published and estimated number of species in aroid genera.

Boyce PC, Croat TB (2018) The Überlist of Araceae, totals for published and estimated number of species in aroid genera. Aroid Society 7:10.

Brundrett M (2004). Diversity and classification of mycorrhizal associations. Biological Reviews 79(3):473-495. https://doi.org/10.1017/S1464793103006316

Brundrett MC, Tedersoo L (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist 220(4):1108-1115. https://doi.org/10.1111/nph.14976

Cabrera LI, Salazar GA, Chase MW, Mayo SJ, Bogner J, Dávila P (2008). Phylogenetic relationships of aroids and duckweeds (Araceae) inferred from coding and noncoding plastid DNA. American Journal of Botany 95(9):1153-1165. https://doi.org/10.3732/ajb.0800073

Croat TB (2019). Araceae a family with great potential. Annals of the Missouri Botanical Garden 104(1):3-9. https://doi.org/10.3417/2018213

Croat TB, Delannay X, Wood R (2018). A revision of Anthurium (Araceae) section Polyneurium for Carchi province, ecuador. Aroideana – Journal of the International Aroid Society 41(1):4-126.

Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S (2020). Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity 12(10):370. https://doi.org/10.3390/d12100370

Dickson S (2004). The Arum-Paris continuum of mycorrhizal symbioses. New Phytologist 163:187-200.

Dickson S, Smith FA, Smith SE (2007). Structural differences in arbuscular mycorrhizal symbioses more than 100 years after Gallaud, where next?. Mycorrhiza 17:375-393. https://doi.org/10.1007/s00572-007-0130-9

Farias GC, Nunes KG, Soares MA, de Siqueira KA, Lima WC, Neves ALR, … Gomes Filho E (2020). Dark septate endophytic fungi mitigate the effects of salt stress on cowpea plants. Brazilian Journal of Microbiology 51:243-253. https://doi.org/10.1007/s42770-019-00173-4

Field KJ, Leake JR, Tille S, Allinson KE, Rimington WR, Bidartondo MI, … Cameron DD (2015). From mycoheterotrophy to mutualism mycorrhizal specificity and functioning in Ophioglossum vulgatum sporophytes. New Phytologist 205(4):1492-1502. https://doi.org/10.1111/nph.13263

Field KJ, Pressel S (2018). Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. New Phytologist 220(4):996-1011. https://doi.org/10.1111/nph.15158

Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010). Agroecology the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20(8):519-530. https://doi.org/10.1007/s00572-010-0333-3

Giesemann P, Eichenberg D, Stöckel M, Seifert LF, Gomes SI, Merckx VS, … Gebauer G (2020). Dark septate endophytes and arbuscular mycorrhizal fungi (Paris‐morphotype) affect the stable isotope composition of ‘classically’ non‐mycorrhizal plants. Functional Ecology 34(12):2453-2466. https://doi.org/10.1111/1365-2435.13673

Howard N, Pressel S, Kaye RS, Daniell TJ, Field KJ (2022). The potential role of Mucoromycotina 'fine root endophytes' in plant nitrogen nutrition. Physiologia Plantarum 174(3):e13715. https://doi.org/10.1111/ppl.13715

Hoysted GA, Kowal J, Pressel S, Duckett JG, Bidartondo MI, Field KJ (2021). Carbon for nutrient exchange between Lycopodiella inundata and Mucoromycotina fine root endophytes is unresponsive to high atmospheric CO2. Mycorrhiza 31:431-440. https://doi.org/10.1007/s00572-021-01033-6

Hoysted GA, Jacob AS, Kowal J, Giesemann P, Bidartondo MI, Duckett JG, … Field KJ (2019) Mucoromycotina fine root endophyte fungi form nutritional mutualisms with vascular plants. Plant Physiology 181(2):565-77. https://doi.org/10.1104/pp.19.00729

Jackson ML (1971). Soil Chemical Analysis. Prentice Hall, New Delhi, India.

Jumpponen A, Trappe JM (1998). Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytologist 140(2):295-310. https://doi.org/10.1046/j.1469-8137.1998.00265.x

Johnston A (1949) Vesicular-arbuscular mycorrhiza in Sea Island cotton and other tropical plants. Tropical Agriculture 26:118-21.

Kowal J, Arrigoni E, Serra J, Bidartondo M (2020). Prevalence and phenology of fine root endophyte colonization across populations of Lycopodiella inundata. Mycorrhiza 30:577-587. https://doi.org/10.1007/s00572-020-00979-3

Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research 92(4):486-488. https://doi.org/10.1016/S0953-7562(89)80195-9

Lesica P, Antibus RK (1990). The occurrence of mycorrhizae in vascular epiphytes of two Costa Rican rain forests. Biotropica 22:250-258. https://doi.org/10.2307/2388535

Lingfei L, Anna Y, Zhiwei Z (2005). Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. FEMS Microbiology Ecology 54(3):367-373. https://doi.org/10.1016/j.femsec.2005.04.011

Maeda M (1954). The meaning of mycorrhiza in regard to systematic botany. Kumamoto Journal of Science B 3:57-84.

Mandyam K, Jumpponen A (2005). Seeking the elusive function of the root colonising dark septate endophytic fungi. Studies in Mycology 53(1):173-189. https://doi.org/10.3114/sim.53.1.173

Mayerhofer MS, Kernaghan G, Harper KA (2013). The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119-128. https://doi.org/10.1007/s00572-012-0456-9

McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytologist 115(3):495-501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x

Muthukumar T, Chinnathambi M, Priyadharsini P (2016). Root fungal associations in some non-orchidaceous vascular lithophytes. Acta Botanica Brasilica 30:407-421. https://doi.org/10.1590/0102-33062016abb0074

Muthukumar T, Karthik S (2021). Epipremnum aureum (Araceae) roots associated simultaneously with Glomeromycotina, Mucoromycotina and Ascomycota fungi. Botanica Complutensis 45:1-9. https://doi.org/10.5209/bocm.72399

Muthukumar T, Sathiyadash K, Valarmathi V (2018). Arbuscular mycorrhizal and dark septate endophyte fungal associations in plants of different vegetation types in Velliangiri hills of Western Ghats, Southern India. Acta Botanica Hungarica 60(1-2):185-222. https://doi.org/10.1556/034.60.2018.1-2.9

Muthukumar T, Senthilkumar M, Rajangam M, Udaiyan K (2006). Arbuscular mycorrhizal morphology and dark septate fungal associations in medicinal and aromatic plants of Western Ghats, Southern India. Mycorrhiza 17:11-24. https://doi.org/10.1007/s00572-006-0077-2

Muthukumar T, Sha L, Yang X, Cao M, Tang J, Zheng Z (2003). Mycorrhiza of plants in different vegetation types in tropical ecosystems of Xishuangbanna, southwest China. Mycorrhiza 13:289-297. https://doi.org/10.1007/s00572-003-0234-9

Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I (2013). Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411-430. https://doi.org/10.1007/s00572-013-0482-2

Orchard S, Hilton S, Bending GD, Dickie IA, Standish RJ, Gleeson DB, …Bass D (2017a). Fine endophytes (Glomus tenue) are related to Mucoromycotina, not Glomeromycota. New Phytologist 213(2):481-486. https://doi.org/10.1111/nph.14268

Orchard S, Standish RJ, Dickie IA, Renton M, Walker C, Moot D, … Ryan MH (2017b). Fine root endophytes under scrutiny: a review of the literature on arbuscule- producing fungi recently suggested to belong to the Mucoromycotina. Mycorrhiza 27:619-638. https://doi.org/10.1007/s00572-017-0782-z

Orchard S, Standish RJ, Nicol D, Dickie IA, Ryan MH (2017). Sample storage conditions alter colonisation structures of arbuscular mycorrhizal fungi and particularly fine root endophyte. Plant and Soil 412:35-42. https://doi.org/10.1007/s11104-016-2867-4

Pedralli G (2002). Distribuição geográfica e taxonomia das famílias Araceae e Dioscoreaceae no Brasil. Inhame e taro: sistemas de produção familiar. Vitória: Incaper, pp 15-26.

Piszczek P, Kuszewska K, Błaszkowski J, Sochacka-Obruśnik A, Stojakowska A, Zubek S (2019). Associations between root-inhabiting fungi and 40 species of medicinal plants with potential applications in the pharmaceutical and biotechnological industries. Applied Soil Ecology 137:69-77. https://doi.org/10.1016/j.apsoil.2019.01.018

Postma JW, Olsson PA, Falkengren-Grerup U (2007). Root colonisation by arbuscular mycorrhizal, fine endophytic and dark septate fungi across a pH gradient in acid beech forests. Soil Biology and Biochemistry 39(2):400-408. https://doi.org/10.1016/j.soilbio.2006.08.007

Rains KC, Nadkarni NM, Bledsoe CS (2003). Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest. Mycorrhiza 13:257-264. https://doi.org/10.1007/s00572-003-0224-y

Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, … Colla G (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae 196:91-108. https://doi.org/10.1016/j.scienta.2015.09.002

Ryan MH, Kirkegaard JA (2012). The agronomic relevance of arbuscular mycorrhizas in the fertility of Australian extensive cropping systems. Agriculture, Ecosystems and Environment 163:37-53. https://doi.org/10.1016/j.agee.2012.03.011

Santos BA, Silva GA, Maia LC, Alves MV (2000). Mycorrhizae in monocotyledonae of Northeast Brazil: subclasses alismatidae, arecidae and zingiberidae. Mycorrhiza 10:151-153. https://doi.org/10.1007/s005720000068

Seerangan K, Thangavelu M (2014). Arbuscular mycorrhizal and dark septate endophyte fungal associations in South Indian aquatic and wetland macrophytes. Journal of Botany. http://dx.doi.org/10.1155/2014/173125.

Smith FA, Smith SE (1997). Structural diversity in (vesicular)–arbuscular mycorrhizal symbioses. New Phytologist 137(3):373-388. https://doi.org/10.1046/j.1469-8137.1997.00848.x

Smith S, Read D (2008). Mycorrhiza symbiosis, 3rd Ed. San Diego, CA: Academic Press.

Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, … Stajich JE (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028-1046. https://doi.org/10.3852/16-042

St. John TV (1980). A survey of mycorrhizal infection in an Amazonian rain forest. Acta Amazonica 10:527-533. https://doi.org/10.1590/1809-43921980103527

Stevens PF (2020). Angiosperm phylogeny website. Version 14, 2017.

Swain J, Devi RS, Kumar S, Antunes LL, Biswal SK, Jena PK (2022). Amorphophallus paeoniifolius (Araceae): A nutraceutical for food disorders, novel bacterial & viral infections. Carpathian Journal of Food Science & Technology 14(1):118-136.

Thangavelu M, Tamilselvi V (2010). Occurrence and morphology of endorhizal fungi in crop species. Tropical and Subtropical Agroecosystems 12(3):593-604.

Trowbridge J, Jumpponen A (2004). Fungal colonization of shrub willow roots at the forefront of a receding glacier. Mycorrhiza 14:283-293. https://doi.org/10.1007/s00572-003-0264-3

Vergara C, Araujo KEC, Alves LS, de Souza SR, Santos LA, Santa-Catarina C, … Zilli JÉ (2018). Contribution of dark septate fungi to the nutrient uptake and growth of rice plants. Brazilian Journal of Microbiology 49:67-78. https://doi.org/10.1016/j.bjm.2017.04.010

Wagg C, Pautler M, Massicotte HB and Peterson L (2008). The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae. Mycorrhiza 18:103-110. https://doi.org/10.1007/s00572-007-0157-y

Wang M, Jiang P (2015). Colonization and diversity of AM fungi by morphological analysis on medicinal plants in southeast China. The Scientific World Journal. https://doi.org/10.1155/2015/753842

Zulhazman H, Fizree MA, Azahar AM, Fadzelly AM, Anis AN (2021). A survey on edible aroids consumed by locals in Kelantan, Peninsular Malaysia. IOP Conference Series: Earth and Environmental Science 736(1):012076. https://doi.org/10.1088/1755-1315/736/1/012076

Published

2023-12-16

How to Cite

ANASWARA, S., AJITHKUMAR, V., BALACHANDAR, M., & MUTHUKUMAR, T. (2023). Endorrhizal fungal symbiosis in aroids of the Western Ghats, southern India. Notulae Scientia Biologicae, 15(4), 11651. https://doi.org/10.55779/nsb15411651

Issue

Section

Research articles
CITATION
DOI: 10.55779/nsb15411651