Evaluation of cross-genus transferability of SSR markers from other legumes to two closely related Onobrychis (Fabaceae) taxa
DOI:
https://doi.org/10.55779/nsb15211549Keywords:
cross-genus transferability, leguminous, microsatellite, Onobrychis, polymorphismAbstract
Microsatellite markers previously developed for other leguminous species were tested for cross-genus transferability and evaluated for their potential usefulness in providing an improved assessment of the genetic relationships between two closely related taxa belonging to Onobrychis genus (Fabaceae). Candidate microsatellite markers were tested for polymorphism and replicability in sixteen populations of O. montana DC. subsp. transsilvanica (Simonk.) Jáv. and O. montana. Out of the 23 SSRs, there were identified seven polymorphic loci. In total 32 alleles were detected and the number of alleles per locus varied from two to six. PIC values ranged from 0.375 to 0.6454, and four SSRs displayed a PIC > 0.5. Relative uniform rates of genetic diversity were obtained. In case of O. montana DC. subsp. transsilvanica (Simonk.) Jáv. the observed and expected heterozygosity ranged from 0.100 to 0.952 and from 0.219 to 0.525, respectively, while for O. montana ranged from 0.166 to 0.750 and from 0.083 to 0.375, respectively. Seven polymorphic SSRs with clear and reproducible amplification were identified. These markers proved to be very efficient for unambiguous population discrimination based on both geographic and taxonomic criteria. Hereafter, these SSR markers can be used as tools for evolutionary studies in Onobrychis genus, as well in providing knowledge on patterns of the species phylogeography.
Metrics
References
Avcı S, Ilhan E, Erayman M, Sancak C (2014). Analysis of Onobrychis genetic diversity using SSR markers from related legume species. Journal of Animal and Plant Sciences 24(2):556-566.
Băcilă I, Şuteu D, Coldea G (2015). Genetic divergence and phylogeography of the alpine plant taxon Onobrychis transsilvanica (Fabaceae). Botany 93:257-266. https://doi.org/10.1139/cjb-2014-0175
Borza A (1949). Conspectus florae Romaniae regionumque affinium, Vol. II. Cartea Românească Press, Cluj.
Ciocârlan V (2009). Flora ilustrată a României – Pteridophyta et Spermatophyta. Ceres Press, Bucharest.
Demdoum S, Muñoz F, Delgado I, Valderrábano J, Wünsch A (2012). EST-SSR cross-amplification and genetic similarity in Onobrychis genus. Genetic Resources and Crop Evolution 59:253-260. https://doi.org/10.1007/s10722-011-9681-x
Ellegren H (2004). Microsatellites: Simple sequences with complex evolution. Nature Reviews Genetics 5:435-445. https://doi.org/10.1038/nrg1348
Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MAR (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theoretical and Applied Genetics 108:414-422. https://doi.org/10.1007/s00122-003-1450-6
Falahati-Anbaran M, Habashi AA, Esfahany M, Mohammadi SA, Ghareyazie B (2007). Population genetic structure based on SSR markers in alfalfa (Medicago sativa L.) from various regions contiguous to the centres of origin of the species. Journal of Genetics 86(1):59-63. https://doi.org/10.1007/s12041-007-0008-9
Gaitán-Solís E, Duque MC, Edwards KJ, Tohme J (2002). Microsatellite repeats in common bean (Phaseolus vulgaris) isolation, characterization, and cross-species amplification in Phaseolus ssp. Crop Science 42(6):2128-2136. https://doi.org/10.2135/cropsci2002.2128
Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003). Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Molecular Genetics and Genomics 270:315-323. https://doi.org/10.1007/s00438-003-0921-4
Gutierrez MV, Vaz Patto MC, Huguet T, Cubero JI, Moreno MT, Torres AM (2005). Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theoretical and Applied Genetics 110:1210-1217. https://doi.org/10.1007/s00122-005-1951-6
Huson DH, Bryant D (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23(2):254-267. https://doi.org/10.1093/molbev/msj030
Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, Huyghe C (2003). Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biology 3:1-19. https://doi.org/10.1186/1471-2229-3-9
Kumar GP, Pathania P, Goyal N, Gupta N, Parimalan R, Radhamani J, … Rajkumar S (2023). Genetic diversity and population structure analysis to construct a core collection from safflower (Carthamus tinctorius L.) germplasm through SSR markers. Agriculture 13(4):836. https://doi.org/10.3390/agriculture13040836
Liu K, Muse SV (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128-2129. https://doi.org/10.1093/bioinformatics/bti282
Löve Á (1975). IOPB chromosome number reports XLIX. Taxon 24(4):501-516. https://doi.org/10.1002/j.1996-8175.1975.tb00341.x
Löve Á (1984). Chromosome number reports LXXXII. Taxon 33(1):126-134. https://doi.org/10.1002/j.1996-8175.1984.tb02474.x
Mohsen HHS, Nasab MZ (2010). Cytotaxonomy of some Onobrychis (Fabaceae) species and populations in Iran. Caryologia 63(1):8-31. https://doi.org/10.1080/00087114.2010.589705
Nyárády A, Nyárády EI (1957). Onobrychis. In: Săvulescu T (Ed). Flora Republicii Populare Române, Vol. V. Academiei Republicii Populare Române Press, Bucharest pp 341-345.
Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998). Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Molecular Biology and Evolution 15(10):1275-1287. https://doi.org/10.1093/oxfordjournals.molbev.a025856
Peakall ROD, Smouse PE (2006). GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1):288-295. https://doi.org/10.1093/bioinformatics/bts460
POWO (2023). Plants of the World Online. Retrieved 2023 May 31 from: http://www.plantsoftheworldonline.org/
Sârbu I, Ştefan N, Oprea A (2013). Plante vasculare din România, Determinator ilustrat de teren. Victor B. Victor Press, Bucharest.
Simko I (2009). Development of EST-SSR markers for the study of population structure in lettuce (Lactuca sativa L.). Journal of Heredity 100(2):256-262. https://doi.org/10.1093/jhered/esn072
Sourdille P, Tavaud M, Charmet G, Bernard M (2001). Transferability of wheat microsatellites to diploid Triticeae species carrying the A., B and D genomes. Theoretical and Applied Genetics 103:346-352. https://doi.org/10.1007/s00122-001-0542-4
Yu K, Park SJ, Poysa V, Gepts P (2000). Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). Journal of Heredity 91(6):429-434. https://doi.org/10.1093/jhered/91.6.429
Zhang Y, Sledge MK, Bouton JH (2007). Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers. Theoretical and Applied Genetics 114:1367-1378. https://doi.org/10.1007/s00122-007-0523-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ioan BĂCILĂ, Dana ŞUTEU, Ana COSTE, Zoltan R. BALÁZS, Gheorghe COLDEA
This work is licensed under a Creative Commons Attribution 4.0 International License.
Papers published in Notulae Scientia Biologicae are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution License.
© Articles by the authors; licensee SMTCT, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.
License:
Open Access Journal - the journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work, due SMTCT supports to increase the visibility, accessibility and reputation of the researchers, regardless of geography and their budgets. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.