Evaluation of cross-genus transferability of SSR markers from other legumes to two closely related Onobrychis (Fabaceae) taxa

Authors

  • Ioan BĂCILĂ National Institute of Research and Development for Biological Sciences, Institute of Biological Research, Department of Experimental Biology, 48 Republicii St., 400015 Cluj-Napoca (RO) https://orcid.org/0000-0001-5591-1926
  • Dana ŞUTEU National Institute of Research and Development for Biological Sciences, Institute of Biological Research, Department of Experimental Biology, 48 Republicii St., 400015 Cluj-Napoca; Babeș-Bolyai University, Doctoral School of Integrative Biology, 1 Kogălniceanu St., 400084 Cluj-Napoca (RO)
  • Ana COSTE National Institute of Research and Development for Biological Sciences, Institute of Biological Research, Department of Experimental Biology, 48 Republicii St., 400015 Cluj-Napoca (RO) https://orcid.org/0000-0002-4538-7769
  • Zoltan R. BALÁZS Babeş-Bolyai University, Faculty of Biology and Geology, Department of Molecular Biology and Biotechnology, 1 Kogălniceanu St., 400084 Cluj-Napoca; Babeș-Bolyai University, Faculty of Biology and Geology, Center for Systematic Biology, Biodiversity and Bioresources - 3B, 1 Kogălniceanu St., 400084, Cluj-Napoca; Babeș-Bolyai University, Doctoral School of Integrative Biology, 1 Kogălniceanu St., 400084 Cluj-Napoca (RO) https://orcid.org/0000-0001-8188-6154
  • Gheorghe COLDEA National Institute of Research and Development for Biological Sciences, Institute of Biological Research, Department of Experimental Biology, 48 Republicii St., 400015 Cluj-Napoca (RO) https://orcid.org/0000-0002-5342-1947

DOI:

https://doi.org/10.55779/nsb15211549

Keywords:

cross-genus transferability, leguminous, microsatellite, Onobrychis, polymorphism

Abstract

Microsatellite markers previously developed for other leguminous species were tested for cross-genus transferability and evaluated for their potential usefulness in providing an improved assessment of the genetic relationships between two closely related taxa belonging to Onobrychis genus (Fabaceae). Candidate microsatellite markers were tested for polymorphism and replicability in sixteen populations of O. montana DC. subsp. transsilvanica (Simonk.) Jáv. and O. montana. Out of the 23 SSRs, there were identified seven polymorphic loci. In total 32 alleles were detected and the number of alleles per locus varied from two to six. PIC values ranged from 0.375 to 0.6454, and four SSRs displayed a PIC > 0.5. Relative uniform rates of genetic diversity were obtained. In case of O. montana DC. subsp. transsilvanica (Simonk.) Jáv. the observed and expected heterozygosity ranged from 0.100 to 0.952 and from 0.219 to 0.525, respectively, while for O. montana ranged from 0.166 to 0.750 and from 0.083 to 0.375, respectively. Seven polymorphic SSRs with clear and reproducible amplification were identified. These markers proved to be very efficient for unambiguous population discrimination based on both geographic and taxonomic criteria. Hereafter, these SSR markers can be used as tools for evolutionary studies in Onobrychis genus, as well in providing knowledge on patterns of the species phylogeography.

Metrics

Metrics Loading ...

References

Avcı S, Ilhan E, Erayman M, Sancak C (2014). Analysis of Onobrychis genetic diversity using SSR markers from related legume species. Journal of Animal and Plant Sciences 24(2):556-566.

Băcilă I, Şuteu D, Coldea G (2015). Genetic divergence and phylogeography of the alpine plant taxon Onobrychis transsilvanica (Fabaceae). Botany 93:257-266. https://doi.org/10.1139/cjb-2014-0175

Borza A (1949). Conspectus florae Romaniae regionumque affinium, Vol. II. Cartea Românească Press, Cluj.

Ciocârlan V (2009). Flora ilustrată a României – Pteridophyta et Spermatophyta. Ceres Press, Bucharest.

Demdoum S, Muñoz F, Delgado I, Valderrábano J, Wünsch A (2012). EST-SSR cross-amplification and genetic similarity in Onobrychis genus. Genetic Resources and Crop Evolution 59:253-260. https://doi.org/10.1007/s10722-011-9681-x

Ellegren H (2004). Microsatellites: Simple sequences with complex evolution. Nature Reviews Genetics 5:435-445. https://doi.org/10.1038/nrg1348

Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MAR (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theoretical and Applied Genetics 108:414-422. https://doi.org/10.1007/s00122-003-1450-6

Falahati-Anbaran M, Habashi AA, Esfahany M, Mohammadi SA, Ghareyazie B (2007). Population genetic structure based on SSR markers in alfalfa (Medicago sativa L.) from various regions contiguous to the centres of origin of the species. Journal of Genetics 86(1):59-63. https://doi.org/10.1007/s12041-007-0008-9

Gaitán-Solís E, Duque MC, Edwards KJ, Tohme J (2002). Microsatellite repeats in common bean (Phaseolus vulgaris) isolation, characterization, and cross-species amplification in Phaseolus ssp. Crop Science 42(6):2128-2136. https://doi.org/10.2135/cropsci2002.2128

Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003). Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Molecular Genetics and Genomics 270:315-323. https://doi.org/10.1007/s00438-003-0921-4

Gutierrez MV, Vaz Patto MC, Huguet T, Cubero JI, Moreno MT, Torres AM (2005). Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theoretical and Applied Genetics 110:1210-1217. https://doi.org/10.1007/s00122-005-1951-6

Huson DH, Bryant D (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23(2):254-267. https://doi.org/10.1093/molbev/msj030

Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, Huyghe C (2003). Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biology 3:1-19. https://doi.org/10.1186/1471-2229-3-9

Kumar GP, Pathania P, Goyal N, Gupta N, Parimalan R, Radhamani J, … Rajkumar S (2023). Genetic diversity and population structure analysis to construct a core collection from safflower (Carthamus tinctorius L.) germplasm through SSR markers. Agriculture 13(4):836. https://doi.org/10.3390/agriculture13040836

Liu K, Muse SV (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128-2129. https://doi.org/10.1093/bioinformatics/bti282

Löve Á (1975). IOPB chromosome number reports XLIX. Taxon 24(4):501-516. https://doi.org/10.1002/j.1996-8175.1975.tb00341.x

Löve Á (1984). Chromosome number reports LXXXII. Taxon 33(1):126-134. https://doi.org/10.1002/j.1996-8175.1984.tb02474.x

Mohsen HHS, Nasab MZ (2010). Cytotaxonomy of some Onobrychis (Fabaceae) species and populations in Iran. Caryologia 63(1):8-31. https://doi.org/10.1080/00087114.2010.589705

Nyárády A, Nyárády EI (1957). Onobrychis. In: Săvulescu T (Ed). Flora Republicii Populare Române, Vol. V. Academiei Republicii Populare Române Press, Bucharest pp 341-345.

Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998). Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Molecular Biology and Evolution 15(10):1275-1287. https://doi.org/10.1093/oxfordjournals.molbev.a025856

Peakall ROD, Smouse PE (2006). GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1):288-295. https://doi.org/10.1093/bioinformatics/bts460

POWO (2023). Plants of the World Online. Retrieved 2023 May 31 from: http://www.plantsoftheworldonline.org/

Sârbu I, Ştefan N, Oprea A (2013). Plante vasculare din România, Determinator ilustrat de teren. Victor B. Victor Press, Bucharest.

Simko I (2009). Development of EST-SSR markers for the study of population structure in lettuce (Lactuca sativa L.). Journal of Heredity 100(2):256-262. https://doi.org/10.1093/jhered/esn072

Sourdille P, Tavaud M, Charmet G, Bernard M (2001). Transferability of wheat microsatellites to diploid Triticeae species carrying the A., B and D genomes. Theoretical and Applied Genetics 103:346-352. https://doi.org/10.1007/s00122-001-0542-4

Yu K, Park SJ, Poysa V, Gepts P (2000). Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). Journal of Heredity 91(6):429-434. https://doi.org/10.1093/jhered/91.6.429

Zhang Y, Sledge MK, Bouton JH (2007). Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers. Theoretical and Applied Genetics 114:1367-1378. https://doi.org/10.1007/s00122-007-0523-3

Published

2023-06-19

How to Cite

BĂCILĂ, I., ŞUTEU, D., COSTE, A., BALÁZS, Z. R., & COLDEA, G. (2023). Evaluation of cross-genus transferability of SSR markers from other legumes to two closely related Onobrychis (Fabaceae) taxa. Notulae Scientia Biologicae, 15(2), 11549. https://doi.org/10.55779/nsb15211549

Issue

Section

Research articles
CITATION
DOI: 10.55779/nsb15211549