Evaluating seed germination and early seedling growth of wild medicinal plants for saline soil cultivation

Authors

  • Mewuleddeg ZEBRO Gangneung-Wonju National University, Department of Plant Science, 25457, Gangneung (KR)
  • Jae-Yun HEO Gangneung-Wonju National University, Department of Plant Science, 25457, Gangneung (KR)

DOI:

https://doi.org/10.55779/nsb16211960

Abstract

The impact of soil salinity on various wild plant species, including Peucedanum japonicum, Astragalus membranaceus, Lepidium sativum, Acyranthes bidentata, and Platycodon grandiflorum, was investigated in this study. Different concentrations of sodium chloride (NaCl) were used to induce salt stress, and the salt sensitivity index was employed to assess species-specific responses. Among the plants studied, Lepidium sativum exhibited the lowest sensitivity to salt stress during germination across all NaCl concentrations. For instance, at 50 mM NaCl, there were decreases of 7.2% in germination percentage, 4.22% in germination energy, 0.35% in germination index, 7.2% in peak value, and 11.99% in germination value. These percentages decreased further, ranging from 15.30% to 30.92%, at 100 mM NaCl, and more substantially at 150 mM NaCl, where reductions ranged from 42.94% to 66.26%, except for the germination rate, which only decreased by 0.05%. Conversely, Peucedanum japonicum demonstrated the highest sensitivity, experiencing reductions ranging from 27.46% to 100% at 50 mM NaCl, and complete reductions (100%) at 100 and 150 mM NaCl concentrations across all evaluated parameters. In terms of seedling growth, Acyranthes bidentata displayed the lowest sensitivity, with minimal reductions observed in various parameters, while Lepidium sativum showed significant reductions in several aspects of seedling growth under salt stress. The study underscored genetic variation in response to salt stress among the evaluated plant species, suggesting Acyranthes bidentate as a promising candidate for cultivation under salt-stress conditions. This information holds significance for utilizing unfavorable lands for plant cultivation.

Metrics

Metrics Loading ...

References

Afzal M, Hindawi SES, Alghamdi SS, Migdadi HH, Khan MA, Hasnain MU, … Sohaib M (2023). Potential breeding strategies for improving salt tolerance in crop plants. Journal of Plant Growth Regulation 42(6):365-3387. https://doi.org/10.1007/s00344-022-10797-w

Aizaz M, Ahmad W, Asaf S, Khan I, Saad Jan S, Salim Alamri S, … Al-Harrasi A (2023). Characterization of the seed biopriming, plant growth-promoting and salinity-ameliorating potential of halophilic fungi isolated from hypersaline habitats. International Journal of Molecular Sciences 24(5):4904. https://doi.org/10.3390/ijms24054904

Akinyemi O, Oyewole SO, Jimoh KA (2018). Medicinal plants and sustainable human health: a review. Horticulture International Journal 2(4):194-195. https://doi.org/10.15406/hij.2018.02.00051

Arzani A, Kumar S, Mansour MM (2023). Salt tolerance in plants: molecular and functional adaptations. Frontiers in Plant Science 14:1280788. https://doi.org/10.3389/fpls.2023.1280788

Athar HU, Zulfiqar F, Moosa A, Ashraf M, Zafar ZU, Zhang L, … Islam MS (2022). Salt stress proteins in plants. An overview. Frontiers in Plant Science 13:999058. https://doi.org/10.3389/fpls.2022.999058

Aziz MA, Adnan M, Khan AH, Shahat AA, Al-Said MS, Ullah R (2018). Traditional uses of medicinal plants practiced by the indigenous communities at Mohmand Agency, FATA, Pakistan. Journal of Ethnobiology and Ethnomedicine 14:1-6. https://doi.org/10.1186/s13002-017-0204-5

Behera TK, Krishna R, Ansari WA, Aamir M, Kumar P, Kashyap SP, … Kole C (2022). Approaches involved in the vegetable crops salt stress tolerance improvement: Present status and way ahead. Frontiers in Plant Science 12:787292. https://doi.org/10.3389/fpls.2021.787292

De Ron AM, Rodiño AP, Santalla M, González AM, Lema MJ, Martín I, Kigel J (2016). Seedling emergence and phenotypic response of common bean germplasm to different temperatures under controlled conditions and in open field. Frontiers in Plant Science 7:1087. https://doi.org/10.3389/fpls.2016.01087

Durazzo A, Nazhand A, Lucarini M, Silva AM, Souto SB, Guerra F, … Santini A (2021). Astragalus (Astragalus membranaceus Bunge): botanical, geographical, and historical aspects to pharmaceutical components and beneficial role. Rendiconti Lincei. Scienze Fisiche e Naturali 32(3):625-642. https://doi.org/10.1007/s12210-021-01003-2

El-Ramady H, Alshaal T, Elhawat N, Ghazi A, Elsakhawy T, Omara AE, … Schnug E (2018). Plant nutrients and their roles under saline soil conditions. Plant Nutrients and Abiotic Stress Tolerance 2018:297-324. https://doi.org/10.1007/978-981-10-9044-8_13

Fan S, Chen J, Mu J, Zhang M (2023). Genetic diversity and salt tolerance assessment of 51 alfalfa (Medicago sativa) varieties under saline soil conditions. Frontiers in Sustainable Food Systems 7:1278913. https://doi.org/10.3389/fsufs.2023.1278913

Fang X, Mo J, Zhou H, Shen X, Xie Y, Xu J, Yang S (2023). Comparative transcriptome analysis of gene responses of salt-tolerant and salt-sensitive rice cultivars to salt stress. Scientific Reports 13(1):19065. https://doi.org/10.1038/s41598-023-46389-1

Farooq M, Gogoi N, Hussain M, Barthakur S, Paul S, Bharadwaj N, … Siddique KH (2017). Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry 118:199-217. https://doi.org/10.1016/j.plaphy.2017.06.020

Ghassemi-Golezani K, Abdoli S (2022). Physiological and biochemical responses of medicinal plants to salt stress. In: Environmental Challenges and Medicinal Plants: Sustainable Production Solutions under Adverse Conditions. Cham: Springer International Publishing pp 153-181.

Guo J, Shan C, Zhang Y, Wang X, Tian H, Han G, … Wang B (2022). Mechanisms of salt tolerance and molecular breeding of salt-tolerant ornamental plants. Frontiers in Plant Science 13:854116. https://doi.org/10.3389/fpls.2022.854116

Guoying W, Jing Y, Yilin K, Yujun S, Yan Y, Guoxue L (2021). Determination of seed germination index and selection of sensitive seeds for phytotoxicity evaluation of composting. Transactions of the Chinese Society of Agricultural Engineering 37:220-227. https://doi.org/10.11975/j.issn.1002-6819.2021.19.025

Haider MZ, Ashraf MA, Rasheed R, Hussain I, Riaz M, Qureshi FF, … Hafeez A (2023). Impact of Salinity Stress on Medicinal Plants. In: Husen A, Iqbal M (Eds). Medicinal Plants. Springer, Singapore, pp 199-239.

Hailu B, Mehari H (2021). Impacts of soil salinity/sodicity on soil-water relations and plant growth in dry land areas: A review. Journal of Natural Sciences Research 28(12):1-10. https://doi.org/10.7176/JNSR/12-3-01

He J, Li X, Yang S, Shi Y, Dai Y, Han S, … Xiu M (2022). Protective effect of astragalus membranaceus and its bioactive compounds against the intestinal inflammation in Drosophila. Frontiers in Pharmacology 13:1019594. https://doi.org/10.3389/fphar.2022.1019594

Hossain MS, Dietz KJ (2016). Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Frontiers in Plant Science 7:548. https://doi.org/10.3389/fpls.2016.00548

Hu J, Zhuang Y, Li X, Li X, Sun C, Ding Z, … Zhang D (2022). Time-series transcriptome comparison reveals the gene regulation network under salt stress in soybean (Glycine max) roots. BMC Plant Biology 22(1):157. https://doi.org/10.1186/s12870-022-03541-9

Ibrahim MM, Mounier MM, Bekheet SA (2023). Targeting apoptotic anticancer response with natural glucosinolates from cell suspension culture of Lepidium sativum. Journal of Genetic Engineering and Biotechnology 21(1):53. https://doi.org/10.1186/s43141-023-00511-y

Isayenkov SV (2019). Genetic sources for the development of salt tolerance in crops. Plant Growth Regulation 89(1):1-7. https://doi.org/10.1007/s10725-019-00519-w

Jisha KC, Vijayakumari K, Puthur JT (2013). Seed priming for abiotic stress tolerance: an overview. Acta Physiologiae Plantarum 35:1381-1396. https://doi.org/10.1007/s11738-012-1186-5

Ke W, Bonilla-Rosso G, Engel P, Wang P, Chen F, Hu X (2020). Suppression of high-fat diet–induced obesity by platycodon grandiflorus in mice is linked to changes in the gut microbiota. The Journal of Nutrition 150(9):2364-2374. https://doi.org/10.1093/jn/nxaa159

Khaeim H, Kende Z, Balla I, Gyuricza C, Eser A, Tarnawa Á (2022). The effect of temperature and water stresses on seed germination and seedling growth of wheat (Triticum aestivum L.). Sustainability 14(7):3887. https://doi.org/10.3390/su14073887

Khan MO, Irfan M, Muhammad A, Ullah I, Nawaz S, Khalil MK, Ahmad M (2022). A practical and economical strategy to mitigate salinity stress through seed priming. Frontiers in Environmental Science 10:1613. https://doi.org/10.3389/fenvs.2022.991977

Kim SH, Jang DC, Zebro M, Heo JY (2022). Effects of various combinations of red and blue LEDs on seed germination and growth in Indian spinach (Basella alba L.). Italus Hortus 29:196-205. https://doi.org/10.26353/j.itahort/2022.1.196205

Kumar A, Rodrigues V, Verma S, Singh M, Hiremath C, Shanker K, … Sundaresan V (2021). Effect of salt stress on seed germination, morphology, biochemical parameters, genomic template stability, and bioactive constituents of Andrographis paniculata Nees. Acta Physiologiae Plantarum 43:1-4. https://doi.org/10.1007/s11738-021-03237-x

Lee CD, Cho H, Shim J, Tran GH, Lee HD, Ahn KH, … Lee S (2023). Characteristics of phenolic compounds in Peucedanum japonicum according to various stem and seed colors. Molecules 28(17):6266. https://doi.org/10.3390/molecules28176266

Lee S, Han EH, Lim MK, Lee SH, Yu HJ, Lim YH, Kang S (2020). Fermented Platycodon grandiflorum extracts relieve airway inflammation and cough reflex sensitivity in vivo. Journal of Medicinal Food 23(10):1060-1069. https://doi.org/10.1089/jmf.2019.4595

Lewis MA, Weber DE (2002). Effects of substrate salinity on early seedling survival and growth of Scirpus robustus Pursh and Spartina alterniflora Loisel. Ecotoxicology 11:19-26. https://doi.org/10.1023/A:1013788928922

Li CX, Liu Y, Zhang YZ, Li JC, Lai J (2022). Astragalus polysaccharide: a review of its immunomodulatory effect. Archives of Pharmacal Research 45(6):367-389. https://doi.org/10.1007/s12272-022-01393-3

Li J, Diao Y, Jiang L, He Q, Wang F, Hao W (2022). Exploration of ecological restoration of saline-alkali land based on NbS Study on the salt resistance and desalination performance of three cash crops. Plos One 17(10):e0275828. https://doi.org/10.1371/journal.pone.0275828

Lu Y, Liu H, Chen Y, Zhang L, Kudusi K, Song J (2022). Effects of drought and salt stress on seed germination of ephemeral plants in desert of northwest China. Frontiers in Ecology and Evolution 10:1026095. https://doi.org/10.3389/fevo.2022.1026095

Ma L, Liu X, Lv W, Yang Y (2022). Molecular mechanisms of plant responses to salt stress. Frontiers in Plant Science 13:934877. https://doi.org/10.3389/fpls.2022.934877

Malakar P, Chattopadhyay D (2021). Adaptation of plants to salt stress: the role of the ion transporters. Journal of Plant Biochemistry and Biotechnology 30:668-83. https://doi.org/10.1007/s13562-021-00741-6

Mann A, Lata C, Kumar N, Kumar A, Kumar A, Sheoran P (2023). Halophytes as new model plant species for salt tolerance strategies. Frontiers in Plant Science 14:1137211. https://doi.org/10.3389/fpls.2023.1137211

Mansour MM, Hassan FA (2022). How salt stress-responsive proteins regulate plant adaptation to saline conditions?. Plant Molecular Biology 1:1-50. https://doi.org/10.1007/s11103-021-01232-x

Manzoor M, Ahmad M, Zafar M, Gillani SW, Shaheen H, Pieroni A, … Khaydarov K (2023). The local medicinal plant knowledge in Kashmir Western Himalaya: a way to foster ecological transition via community-centred health seeking strategies. Journal of Ethnobiology and Ethnomedicine 19(1):56. https://doi.org/10.1186/s13002-023-00631-2

Mbarki S, Skalicky M, Vachova P, Hajihashemi S, Jouini L, Zivcak M, … Zoghlami Khelil A (2020). Comparing salt tolerance at seedling and germination stages in local populations of Medicago ciliaris L. to Medicago intertexta L. and Medicago scutellata L. Plants 9(4):526. https://doi.org/10.3390/plants9040526

Miransari M, Adham S, Miransari M, Miransari A (2022). The physicochemical approaches of altering growth and biochemical properties of medicinal plants in saline soils. Applied Microbiology and Biotechnology 106(5-6):1895-1904. https://doi.org/10.1007/s00253-022-11838-w

Mishra A, Tanna B (2017). Halophytes: potential resources for salt stress tolerance genes and promoters. Frontiers in Plant Science 8:252363. https://doi.org/10.3389/fpls.2017.00829

Mishra AK, Das R, George Kerry R, Biswal B, Sinha T, Sharma S, … Kumar M (2023). Promising management strategies to improve crop sustainability and to amend soil salinity. Frontiers in Environmental Science 10:962581. https://doi.org/10.3389/fenvs.2022.962581

Misra V, Mall AK, Ansari MI (2021). Physiological and Molecular Responses to Salinity Due to Excessive Na+ in Plants. In: Husen A (Ed). Harsh Environment and Plant Resilience. Springer, India, pp 291-303.

Mofokeng MM, Du Plooy CP, Araya HT, Amoo SO, Mokgehle SN, Pofu KM, Mashela PW (2022). Medicinal plant cultivation for sustainable use and commercialization of high-value crops. South African Journal of Science 118(7-8):1-7. http://dx.doi.org/10.17159/sajs.2022/12190

Mohammadi M, Pouryousef M, Farhang N (2023). Study on germination and seedling growth of various ecotypes of fennel (Foeniculum vulgare Mill.) under salinity stress. Journal of Applied Research on Medicinal and Aromatic Plants 34:100481. https://doi.org/10.1016/j.jarmap.2023.100481

Mokrani S, Nabti EH, Cruz C (2022). Recent trends in microbial approaches for soil desalination. Applied Sciences 12(7):3586. https://doi.org/10.3390/app12073586

Naseer MN, Rahman FU, Hussain Z, Khan IA, Aslam MM, Aslam A, … Iqbal S (2022). Effect of salinity stress on germination, seedling growth, mineral uptake and chlorophyll contents of three Cucurbitaceae species. Brazilian Archives of Biology and Technology 65:e22210213. https://doi.org/10.1590/1678-4324-2022210213

Negrão S, Schmöckel SM, Tester MJ (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany 119(1):1-11. https://doi.org/10.1093/aob/mcw191

Ondrasek G, Rengel Z, Maurović N, Kondres N, Filipović V, Savić R, … Romić D (2021). Growth and element uptake by salt-sensitive crops under combined NaCl and Cd stresses. Plants 10(6):1202. https://doi.org/10.3390/plants10061202

Özkan U, Benlioğlu B, Telci Kahramanoğullari CA (2022). A comparison of germination responses on Italian ryegrass (diploid vs tetraploid) seeds to interactive effects of salinity and temperature. Polish Journal of Environmental Studies 31(5):4229-4237. https://doi.org/10.15244/pjoes/146941

Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research 22:4056-4075. https://doi.org/10.1007/s11356-014-3739-1

Park HK, Kim SH, Lee JH, Kim KY, Sim JE, Jang DC, Park SM (2023). Physiological responses of Pak Choi (Brassica rapa subsp. chinensis) genotypes to salt tolerance. Horticulturae 9(11):1161. https://doi.org/10.3390/horticulturae9111161

Pongprayoon W, Tisarum R, Theerawittaya C, Cha-Um S (2019). Evaluation and clustering on salt-tolerant ability in rice genotypes (Oryza sativa L. subsp. indica) using multivariate physiological indices. Physiology and Molecular Biology of Plants 25:473-83. https://doi.org/10.1007/s12298-018-00636-2

Rajkumari N, Chowrasia S, Nishad J, Ganie SA, Mondal TK (2023). Metabolomics-mediated elucidation of rice responses to salt stress. Planta 258(6):111. https://doi.org/10.1007/s00425-023-04258-1

Reed RC, Bradford KJ, Khanday I (2022). Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity 128(6):450-459. https://doi.org/10.1038/s41437-022-00497-2

Romano A, Stevanato P (2020). Germination data analysis by time-to-event approaches. Plants 9(5):617. https://doi.org/10.3390/plants9050617

Saisho D, Takumi S, Matsuoka Y (2016). Salt tolerance during germination and seedling growth of wild wheat Aegilops tauschii and its impact on the species range expansion. Scientific Reports 6(1):38554. https://doi.org/10.1038/srep38554

Santo A, Mattana E, Frigau L, Marzo Pastor A, Picher Morelló MC, Bacchetta G (2017). Effects of NaCl stress on seed germination and seedling development of Brassica insularis Moris (Brassicaceae). Plant Biology 19(3):368-376. https://doi.org/10.1111/plb.12539

Sayed MA, Maurer A, Schmutzer T, Schnurbusch T, Börner A, Hansson M, … Youssef HM (2022). Genome-wide association study of salt tolerance-related traits during germination and seedling development in an intermedium-spike barley collection. International Journal of Molecular Sciences 23(19):11060. https://doi.org/10.3390/ijms231911060

Senousy HH, Hamoud YA, Abu-Elsaoud AM, Mahmoud Al zoubi O, Abdelbaky NF, … Soliman MH (2023). Algal bio-stimulants enhance salt tolerance in common bean: dissecting morphological, physiological, and genetic mechanisms for stress adaptation. Plants 12(21):3714. https://doi.org/10.3390/plants12213714

Shaheen S, Baber M, Aslam S, Aslam S, Shaheen M, Waheed R, … Azhar MT (2023). Effect of NaCl on morphophysiological and biochemical responses in Gossypium hirsutum L. Agronomy 13(4):1012. https://doi.org/10.3390/agronomy13041012

Shahid MA, Sarkhosh A, Khan N, Balal RM, Ali S, Rossi L, … Garcia-Sanchez F (2020). Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 10(7):938. https://doi.org/10.3390/agronomy10070938

Shao Y, Cheng Y, Pang H, Chang M, He F, Wang M, … Dai T (2021). Investigation of salt tolerance mechanisms across a root developmental gradient in almond rootstocks. Frontiers in Plant Science 11:595055. https://doi.org/10.3389/fpls.2020.595055

Shoukat E, Ahmed MZ, Abideen Z, Azeem M, Ibrahim M, Gul B, Khan MA (2020). Short- and long-term salinity induced differences in growth and tissue specific ion regulation of Phragmites karka. Flora 263:151550. https://doi.org/10.1016/j.flora.2020.151550

Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S (2021). Salinity tolerance mechanisms and their breeding implications. Journal of Genetic Engineering and Biotechnology 19(1):1-8. https://doi.org/10.1186/s43141-021-00274-4

Singh P, Choudhary KK, Chaudhary N, Gupta S, Sahu M, Tejaswini B, Sarkar S (2022). Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. Frontiers in Plant Science 13:1006617. https://doi.org/10.3389/fpls.2022.1006617

Song J, Wang H, Chu R, Zhao L, Li X, An S, … Du W, Li Q (2023). Differences in physiological characteristics, seed germination, and seedling establishment in response to salt stress between dimorphic seeds in the halophyte Suaeda liaotungensis. Plants 12(6):1408. https://doi.org/10.3390/plants12061408

Ssenku JE, Okurut SA, Namuli A, Kudamba A, Tugume P, Matovu P, … Walusansa A (2022). Medicinal plant use, conservation, and the associated traditional knowledge in rural communities in Eastern Uganda. Tropical Medicine and Health 50(1):39. https://doi.org/10.1186/s41182-022-00428-1

Su M, Tang T, Tang W, Long Y, Wang L, Liu M (2023). Astragalus improves intestinal barrier function and immunity by acting on intestinal microbiota to treat T2DM: A research review. Frontiers in Immunology 14: 1243834. https://doi.org/10.3389/fimmu.2023.1243834

Szablińska-Piernik J, Lahuta LB (2023). Changes in polar metabolites during seed germination and early seedling development of pea, cucumber, and wheat. Agriculture 13(12):2278. https://doi.org/10.3390/agriculture13122278

Tao R, Ding J, Li C, Zhu X, Guo W, Zhu M (2021). Evaluating and screening of agro-physiological indices for salinity stress tolerance in wheat at the seedling stage. Frontiers in Plant Science 12:646175. https://doi.org/10.3389/fpls.2021.646175

Tarchoun N, Saadaoui W, Mezghani N, Pavli OI, Falleh H, Petropoulos SA (2022). The effects of salt stress on germination, seedling growth and biochemical responses of Tunisian squash (Cucurbita maxima Duchesne) germplasm. Plants 11(6):800. https://doi.org/10.3390/plants11060800

Tasnim A, Jahan I, Azim T, Karmoker D, Seraj ZI (2023). Paired growth of cultivated and halophytic wild rice under salt stress induces bacterial endophytes and gene expression responses. Frontiers in Plant Science 14:1244743. https://doi.org/10.3389/fpls.2023.1244743

Tebini M, Rabaoui G, M’Rah S, Luu DT, Ben Ahmed H, Chalh A (2022). Effects of salinity on germination dynamics and seedling development in two amaranth genotypes. Physiology and Molecular Biology of Plants 28(7):1489-500. https://doi.org/10.1007/s12298-022-01221-4

Trușcă M, Gâdea Ș, Vidican R, Stoian V, Vâtcă A, Balint C, ... Vâtcă S (2023). Exploring the research challenges and perspectives in ecophysiology of plants affected by salinity stress. Agriculture 13(3):734. https://doi.org/10.3390/agriculture13030734

Turhan A, Kuşçu H, Şeniz V (2011). Effects of different salt concentrations (NaCl) on germination of some spinach cultivars. Uludağ Üniversitesi Ziraat Fakültesi Dergisi 25(1):65-77.

Uçgun K, Ferreira JF, Liu X, da Silva Filho JB, Suarez DL, Lacerda CF, Sandhu D (2020). Germination and growth of spinach under potassium deficiency and irrigation with high-salinity water. Plants 9(12):1739. https://doi.org/10.3390/plants9121739

Wang JR, Wang L, Xu XY, Yan HY, Hu SX, Gao CB, Wei LY (2020). Experimental study on salt tolerance of seeds of four annual plants during germination. Pratacultural Science 37(2):237-244. https://doi.org/10.11829/j.issn.1001-0629.2019-0206

Wang XY, Wang RC, Qu ZY, Zhu YZ, Li YL (2022). Advances on immunoregulation effect of astragalus polysaccharides. Frontiers in Natural Products 1:971679. https://doi.org/10.3389/fntpr.2022.971679

Wu H, Guo J, Wang C, Li K, Zhang X, Yang Z, Li M, Wang B (2019). An effective screening method and a reliable screening trait for salt tolerance of Brassica napus at the germination stage. Frontiers in Plant Science 10:530. https://doi.org/10.3389/fpls.2019.00530

Xiao F, Zhou H (2023). Plant salt response: Perception, signaling, and tolerance. Frontiers in Plant Science 13:1053699. https://doi.org/10.3389/fpls.2022.1053699

Yue H, Sun S, Wang R, Ma X, Shen S, Luo Y, … Gong Y (2023). Study on the mechanism of salt relief and growth promotion of Enterobacter cloacae on cotton. BMC Plant Biology 23(1):656. https://doi.org/10.1186/s12870-023-04641-w

Zhang G, Zhou J, Peng Y, Tan Z, Li L, Yu L, … Yao X (2022). Genome-wide association studies of salt tolerance at seed germination and seedling stages in Brassica napus. Frontiers in Plant Science 12:772708. https://doi.org/10.3389/fpls.2021.772708

Zhang HX, Zhou DW, Tian Y, Huang YX, Sun ZW (2013). Comparison of seed germination and early seedling growth responses to salinity and temperature of the halophyte Chloris virgata and the glycophyte Digitaria sanguinalis. Grass and Forage Science 68(4):596-604. https://doi.org/10.1111/gfs.12024

Zhang N, Zhang H, Ren J, Bai B, Guo P, Lv Z, … Zhao T (2024). Characterization and comprehensive evaluation of phenotypic and yield traits in salt-stress-tolerant peanut germplasm for conservation and breeding. Horticulturae 10(2):147. https://doi.org/10.3390/horticulturae10020147

Zheng Y, Ren W, Zhang L, Zhang Y, Liu D, Liu Y (2020). A review of the pharmacological action of Astragalus polysaccharide. Frontiers in Pharmacology 11:349. https://doi.org/10.3389/fphar.2020.00349

Downloads

Published

2024-05-20

How to Cite

ZEBRO, M., & HEO, J.-Y. (2024). Evaluating seed germination and early seedling growth of wild medicinal plants for saline soil cultivation. Notulae Scientia Biologicae, 16(2), 11960. https://doi.org/10.55779/nsb16211960

Issue

Section

Research articles
CITATION
DOI: 10.55779/nsb16211960