Supply of essential and nonessential amino acids, proteins, antioxidants, iron and zinc from the main varieties of beans consumed in Mexico and their potential for biofortification


  • Ibeth M. HERRERA-HERNÁNDEZ Universidad Tecnológica de Camargo, Unidad Académica Meoqui, Cesar Viramontes Moreno 234, C.P. 33130, Cd. Meoqui Chih. (MX)
  • Esteban SÁNCHEZ Centro de Investigación en Alimentación y Desarrollo A.C. Coordinación Académica Delicias. Av. Cuarta Sur 3820, C.P. 33089, Cd, Delicias Chih. (MX)
  • Carlos A. RAMÍREZ-ESTRADA Centro de Investigación en Alimentación y Desarrollo A.C. Coordinación Académica Delicias. Av. Cuarta Sur 3820, C.P. 33089, Cd, Delicias Chih. (MX)
  • Julio C. ANCHONDO-PÁEZ Centro de Investigación en Alimentación y Desarrollo A.C. Coordinación Académica Delicias. Av. Cuarta Sur 3820, C.P. 33089, Cd, Delicias Chih. (MX)
  • Sandra PÉREZ-ÁLVAREZ Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrícolas y Forestales. Km 2.5 Carretera Delicias a Rosales, C.P. 33000, Cd, Delicias Chih. (MX)



Biofortification, glutamic acid, green bean, Phaseolus vulgaris L.,, proline


The objective of the present study was to characterize the contribution of essential and non-essential amino acids, protein, iron (Fe), and zinc (Zn) concentration, and antioxidant activity of the main bean varieties produced and consumed in Mexico. 23 varieties of beans were selected, and their amino acid profile, Fe and Zn concentration, protein and antioxidant activity were evaluated. The data obtained were subjected to an analysis of variance, test of separation of means and a correlation analysis. The results obtained indicate that the beans analyzed are an excellent source of essential amino acids (Histidine, threonine, valine, methionine, lysine, isoleucine, leucine and phenylalanine) and non-essential amino acids (Aspartic acid, serine, glutamic acid, glycine, alanine, proline, cysteine, tyrosine and arginine). The most prominent amino acids in Mexican bean varieties were: Glutamic acid, proline, aspartic acid, serine, lysine, and leucine. Regarding antioxidant activity, the most outstanding concentrations ranged from 91.18 to 96.76% inhibition. The bean varieties with the highest accumulation of amino acids, proteins, Fe, Zn and antioxidant activity were: 1) Black-eyed (23); 2) Peruvian (154); 3) Flor de Junio (150); 4) Pinto Saltillo (155). Finally, it was found that the common bean (Phaseolus vulgaris L.) is an excellent vehicle for the biofortification of Fe and Zn, which can contribute significantly to combat malnutrition problems and health of vulnerable communities in the urban and rural sectors of Mexico, as well as in the developing countries of the world.


Metrics Loading ...


Acosta-Gallegos JA, Mendoza-Hernandez FM, Guzman-Maldonado SH, Hernandez JY, Herrera, MDY (2016). Contenido de proteína y minerales en la semilla de frijol silvestre y domesticado. [Protein and mineral content in the seed of wild and domesticated common bean]. Revista Mexicana de Ciencias Agrícolas17:3281-3291.

AOAC (1995). Official Methods of Analysis. (16th ed). Association of Official Analytical Chemists, Washington, DC.

Astephen N (1993). Waters AccQ Tag method for hydrolysate amino acid analysis. Waters Application Notebook.

Boateng, J, Verghese M, Walker LT, Ogutu S (2008). Effect of processing on antioxidant contents in selected dry beans (Phaseolus spp. L.). LWT-Food Science and Technology 41(9):1541-1547.

Celmeli T, Sari H, Canci H, Sari D, Adak A, Eker T, Toker C (2018). The nutritional content of common bean (Phaseolus vulgaris L.) landraces in comparison to modern varieties. Agronomy 8(9):166.

Chávez-Mendoza C, Sánchez E (2017). Bioactive compounds from Mexican varieties of the common bean (Phaseolus vulgaris): Implications for health. Molecules 22(8):1360.

Espinosa-Alonso LG. Lygin A, Widholm JM, Valverde ME, Paredes-Lopez O (2006). Polyphenols in wild and weedy Mexican common beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry 54(12):4436-4444.

FAO (2013). Dietary protein quality evaluation in human nutrition. Food and agriculture organization of the United Nations (1st ed), Auckland, New Zealand.

Galili G, Amir R (2013). Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. Plant Biotechnology Journal 11(2):211-222.

Gan RY, Wang MF, Lui WY, Wu K, Corke H (2016). Dynamic changes in phytochemical composition and antioxidant capacity in green and black mung bean (Vigna radiata) sprouts. International Journal of Food Science & Technology 51(9):2090-2098.

Ganesan K, Xu B (2018). A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Science and Human Wellness 7(1):11-33.

Garretson L, Tyl C, Marti A (2018). Effect of processing on antioxidant activity, total phenols, and total flavonoids of pigmented heirloom beans. Journal of Food Quality 2018.

Golam-Mortuza MD, Tzen JT (2011). Kalimatar (vicia faba l.) cooking characteristics as affected by soaking and roasting. Journal of Food Processing and Preservation 35(2):257-263.

Gupta SS, Mishra V, Mukherjee MD, Saini P, Ranjan KR (2021). Amino acid derived biopolymers: Recent advances and biomedical applications. International Journal of Biological Macromolecules 188:542-567.

Hou Y, Yin Y, Wu G (2015). Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Experimental Biology and Medicine 240(8):997-1007.

Huang D, Liang H, Ren M, Ge X, Ji K, Yu H, Maulu S (2021). Effects of dietary lysine levels on growth performance, whole body composition and gene expression related to glycometabolism and lipid metabolism in grass carp, Ctenopharyngodon idellus fry. Aquaculture 530:735806.

Karacan MS, Aslantaş N (2008). Simultaneous preconcentration and removal of iron, chromium, nickel with N, N′-etylenebis-(ethane sulfonamide) ligand on activated carbon in aqueous solution and determination by ICP-OES. Journal of Hazardous Materials 155(3):551-557.

Khan J, Deb PK, Priya S, Medina KD, Devi R, Walode SG, Rudrapal M (2021). Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 26(13):4021.

Mahajan R, Zargar SM, Aezum AM, Farhat S, Gani M, Agrawal GK, Rakwal R (2015). Evaluation of iron, zinc, and protein contents of common bean (Phaseolus vulgaris L.) genotypes: a collection from Jammu & Kashmir, India. Legume Genomics and Genetics 6(2):1-7.

Maphosa Y, Jideani VA (2017). The role of legumes in human nutrition. Functional food-improve health through adequate food, 1: 13.

Marrugo-Ligardo YA, Montero-Castillo PM, Duran-Lengua M (2016). Evaluación nutricional de concentrados proteicos de Phaseolus lunatus y Vigna unguiculata. [Nutritional evaluation of protein concentrates of Phaseolus lunatus and Vigna unguiculata]. Información Tecnológica 27(6):107-114.

Mederos Y (2006). Indicadores de la calidad en el grano de frijol (Phaseolus vulgaris L.). [Quality indicators in bean (Phaseolus vulgaris L.)]. Biology 27:55-63.

Miquilena E, Moros AH (2012). Evaluación del contenido de proteína, minerales y perfil de aminoácidos en harinas de Cajanus cajan, Vigna unguiculata y Vigna radiata para su uso en la alimentación humana. [Evaluation of protein content, minerals and amino acid profile in Cajanus cajan, Vigna unguiculata and Vigna radiata flours for use in human food.]. Revista Científica UDO Agrícola 12(3):730-740.

Moretti R, Caruso P (2019). The controversial role of homocysteine in neurology: from labs to clinical practice. International Journal of Molecular Sciences 20(1):231.

Petry N, Boy E, Wirth JP, Hurrell RF (2015). The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients 7(2):1144-1173.

Reussi-Calvo NI, Echeverría HE, Sainz-Rozas H (2008). Comparación de métodos de determinación de nitrógeno y azufre en planta: implicancia en el diagnóstico de azufre en trigo. [Comparison of nitrogen and sulfur determination methods in plants: implications for sulfur diagnosis in wheat]. Ciencia del suelo 26(2):161-167.

Rivas-Vega ME (2006). Valor nutricional del frijol yorimon (Vigna unguiculata L. Walp) para camarón blanco del pacífico (Litopeneaus vannamer). [Nutritional value of yorimon bean (Vigna unguiculata L. Walp) for Pacific white shrimp (Litopeneaus vannamer)]. Centro de investigación biológicas del noroeste, S.C, B.C.S Méx.

SAS/STAT 9.0 (2002). Users Guide; SAS Institute, Inc.: Cary, NC, USA.

Sathe SK (2002). Dry bean protein functionality. Critical Reviews in Biotechnology 22(2):175-223.

Servicio de Información Agroalimentaria y Pesquera (SIAP). Retrieved 2021 September 10 from:

Wu G (2020). Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino acids 52(3):329-360.

Wu G (2013). Functional amino acids in nutrition and health. Amino Acids 45 407-411.

Wu G (2021). Amino acids: biochemistry and nutrition. CRC Press (2nd ed), Boca Raton, Florida.

Xu BJ, Yuan SH, Chang SKC (2007). Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. Journal of Food Science 72(2):S167-S177.



How to Cite

HERRERA-HERNÁNDEZ, I. M., SÁNCHEZ, E., RAMÍREZ-ESTRADA, C. A., ANCHONDO-PÁEZ, J. C., & PÉREZ-ÁLVAREZ, S. (2023). Supply of essential and nonessential amino acids, proteins, antioxidants, iron and zinc from the main varieties of beans consumed in Mexico and their potential for biofortification. Notulae Scientia Biologicae, 15(4), 11733.



Research articles
DOI: 10.55779/nsb15411733

Most read articles by the same author(s)