Use of biostimulant compounds in agriculture: chitosan as a sustainable option for plant development

Authors

  • Alejandro PALACIO-MÁRQUEZ Center for Research in Food and Development A.C. CIAD, Delicias, Chihuahua (MX)
  • Carlos A. RAMÍREZ-ESTRADA Center for Research in Food and Development A.C. CIAD, Delicias, Chihuahua (MX)
  • Esteban SÁNCHEZ Center for Research in Food and Development A.C. CIAD, Delicias, Chihuahua (MX)
  • Damaris L. OJEDA-BARRIOS Autonomous University of Chihuahua, Faculty of Agrotechnological Sciences, Chihuahua (MX)
  • Celia CHÁVEZ-MENDOZA Center for Research in Food and Development A.C. CIAD, Delicias, Chihuahua (MX)
  • Juan P. SIDA-ARREOLA Technological University of Camargo Meoqui Unit, Meoqui, Chihuahua (MX)
  • Pablo PRECIADO-RANGEL Instituto Tecnológico Nacional de México – Instituto Tecnológico de Torreón (ITT), 227170 Torreón, Coahuila (MX)

Keywords:

chitosan, defence inducer, iron, nanoparticles, plants, zinc

Abstract

A novel and sustainable strategy to solve problems caused by stress in plants is the use of naturally prepared solutions called biostimulants. These products in the last decade have received attention by the scientific communities of greatest relevance in agricultural systems because they modify physiological processes to improve crop production and quality. Within this group, one of the biopolymers with the greatest number of beneficial properties is chitosan, a deacetylated form of chitin found in the exoskeletons of crustaceans, fungal cell walls and in the cuticle of insects. In many species of crops the application of chitosan is studied. Several studies have demonstrated its property as an antiperspirant, plant growth promoter and defense system booster in stressful situations. There is evidence that chitosan is one of the most suitable compounds to use together with macro and micronutrients, due to its wide range of characteristics that include biocompatibility, biodegradability, high permeability, cost-benefit ratio, low toxicity, and excellent film-forming capacity. that are used as covers, in addition to that their uses can be extended with pesticides, herbicides, genetic material and plant hormones. The general objective of this review is to describe the role of biostimulants in agriculture, emphasizing the use of chitosan and its effects on plants, in addition to the relationship and interaction it presents with key micronutrients in plant nutrition such as iron and zinc.

Metrics

Metrics Loading ...

References

Abdel-Aziz HMM, Hasaneen MNA, Omer AM (2016). Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research 14(1):e0902. http://dx.doi.org/10.5424/sjar/2016141-8205

Abu-Muriefah SS (2013). Effect of chitosan on common bean (Phaseolus vulgaris L.) plants grown under water stress conditions. International Research Journal of Agricultural Science and Soil Science 3(6):192-199.

Alavi P, Starcher M, Zachow C, Müller H, Berg G (2013). Root-microbe systems: the effect and mode of interaction of stress protecting agent (SPA) Stenotrophomonas rhizophila DSM14405T. Frontiers in Plant Science 4:141. https://doi.org/10.3389/fpls.2013.00141

Albrecht U (2019). Plant Biostimulants: definition and overview of categories and effects. EDIS 2019(3). https://doi.org/10.32473/edis-hs1330-2019

Ali M, Ayyub CM, Hussain Z, Hussain R, Rashid S (2020). Optimization of chitosan level to alleviate the drastic effects of heat stress in cucumber (Cucumis sativus L.). Journal of Pure and Applied Agriculture 5(1):30-38.

ALKahtani MD, Attia KA, Hafez YM, Khan N, Eid AM, Ali MA, Abdelaal KA (2020). Chlorophyll fluorescence parameters and antioxidant defense system can display salt tolerance of salt acclimated sweet pepper plants treated with chitosan and plant growth promoting rhizobacteria. Agronomy 10(8):1180. https://doi.org/10.3390/agronomy10091325

Al-Tawaha AR, Turk MA, Al-Tawaha ARM, Alu’datt MH, Wedyan M, Al-Ramamneh EADM, Hoang AT (2018). Using chitosan to improve growth of maize cultivars under salinity conditions. Bulgarian Journal of Agricultural Science 24(3):437-442.

Amine R, Tarek C, Hassane E, Noureddine EH, Khadija O (2021). Chemical proprieties of biopolymers (Chitin/Chitosan) and their synergic effects with endophytic Bacillus species: unlimited applications in agriculture. Molecules 26(4):1117. https://doi.org/10.3390/molecules26041117

Amini J (2015). Induced resistance in potato plants against verticillium wilt invoked by chitosan and Acibenzolar-S-methyl. Australian Journal of Crop Science 9(6):570-576.

Behie SW, Bidochka MJ (2014). Nutrient transfer in plant–fungal symbioses. Trends in Plant Science 19(11):734-740. https://doi.org/10.1016/j.tplants.2014.06.007

Berg G, Grube M, Schloter M, Smalla K (2014). Unraveling the plant microbiome: looking back and future perspectives. Frontiers in Microbiology 5:148. https://doi.org/10.3389/fmicb.2014.00148

Bhupenchandra I, Devi SH, Basumatary A, Dutta S, Singh LK, Kalita P, ... Borah K (2020). Biostimulants: potential and prospects in agriculture. International Research Journal of Pure and Applied Chemistry 21(14):20-35. https://doi.org/10.9734/irjpac/2020/v21i1430244

Biostimulant Coalition (2021). What are biostimulants? http://www.biostimulantcoalition.org/about/

Bulgari R, Cocetta G, Trivellini A, Vernieri P, Ferrante A (2015). Biostimulants and crop responses: a review. Biological Agriculture & Horticulture 31(1):1-17. https://doi.org/10.1080/01448765.2014.964649

Calvo P, Nelson L, Kloepper JW (2014). Agricultural uses of plant biostimulants. Plant and Soil 383(1):3-41. https://doi.org/10.1007/s11104-014-2131-8

Canellas LP, Olivares FL, Aguiar NO, Jones DL, Nebbioso A, Mazzei P, Piccolo A (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae 196:15-27. https://doi.org/10.1016/j.scienta.2015.09.013

Chiaiese P, Corrado G, Colla G, Kyriacou MC, Rouphael Y (2018). Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Frontiers in Plant Science 9:1782. https://doi.org/10.3389/fpls.2018.01782

Choudhary RC, Kumaraswamy RV, Kumari S, Pal A, Raliya R, Biswas P, Saharan V (2017). Synthesis, characterization, and application of chitosan nanomaterials loaded with zinc and copper for plant growth and protection. In: Nanotechnology. Springer, Singapore, pp 227-247.

Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Saharan V (2017b). Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Scientific Reports 7(1):1-11. https://doi.org/10.1038/s41598-017-08571-0

Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, ... Saharan V (2019). Zinc encapsulated chitosan nanoparticle to promote maize crop yield. International Journal of Biological Macromolecules 127:126-135. https://doi.org/10.1016/j.ijbiomac.2018.12.274

Craigie JS (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology 23(3):371-393. https://doi.org/10.1007/s10811-010-9560-4

Crini G (2019). Historical review on chitin and chitosan biopolymers. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-019-00901-0

Croisier F, Jérôme C (2013). Chitosan-based biomaterials for tissue engineering. European Polymer Journal 49(4):780-792. https://doi.org/10.1016/j.eurpolymj.2012.12.009

Deshpande P, Dapkekar A, Oak MD, Paknikar KM, Rajwade JM (2017). Zinc complexed chitosan/TPP nanoparticles: a promising micronutrient nanocarrier suited for foliar application. Carbohydrate Polymers 165:394-401. https://doi.org/10.1016/j.carbpol.2017.02.061

Drobek M, Frąc M, Cybulska J (2019). Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress - A review. Agronomy 9(6):335. https://doi.org/10.3390/agronomy9060335

Du Jardin P (2015). Plant biostimulants: definition, concept, main categories and regulation. Scientia Horticulturae 196:3-14. https://doi.org/10.1016/j.scienta.2015.09.021

Economic Overview of the European Biostimulants Market – EBIC (2021). Retrieved 4 March 2021, from https://biostimulants.eu/highlights/economic-overview-of-the-european-biostimulants-market/

El-Mohamedy RSR, Shafeek MR, Abd El-Samad EEDH, Salama DM, Rizk FA (2017). Field application of plant resistance inducers (PRIs) to control important root rot diseases and improvement growth and yield of green bean (Phaseolus vulgaris L.). Australian Journal of Crop Science 11(5):496-505. https://doi.org/10.21475/AJCS.17.11.05.P260

Escudero N, Lopez-Moya F, Ghahremani Z, Zavala-Gonzalez EA, Alaguero-Cordovilla A, Ros-Ibañez C, ... Lopez-Llorca LV (2017). Chitosan increases tomato root colonization by Pochonia chlamydosporia and their combination reduces root-knot nematode damage. Frontiers in Plant Science 8:1415. https://doi.org/10.3389/fpls.2017.01415

Esyanti RR, Dwivany FM, Mahani S, Nugrahapraja H, Meitha K (2019). Foliar application of chitosan enhances growth and modulates expression of defense genes in chilli pepper (Capsicum annuum L.). Australian Journal of Crop Science 13(1): 55-60. https://doi.org/10.21475/ajcs.19.13.01.p1169

FAO (2019). ODS 2. Hambre cero | Objetivos de Desarrollo Sostenible | Organización de las Naciones Unidas para la Alimentación y la Agricultura. [Zero hunger | Sustainable Development Goals | Food and Agriculture Organization of the United Nations.]. Retrieved 2021 March 2 from: http://www.fao.org/sustainable-development-goals/goals/goal-2/es/

Fiorentino N, Ventorino V, Woo SL, Pepe O, De Rosa A, Gioia L, ... Rouphael Y (2018). Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Frontiers in Plant Science 9:743. https://doi.org/10.3389/fpls.2018.00743

Gilbert L, Johnson D (2017). Plant–plant communication through common mycorrhizal networks. Advances in Botanical Research 82:83-97. https://doi.org/10.1016/bs.abr.2016.09.001

Gonzalez-Gomez H, Ramirez-Godina F, Ortega-Ortiz H, Benavides-Mendoza A, Robledo-Torres V, Cabrera-De la Fuente M (2017). Use of chitosan-PVA hydrogels with copper nanoparticles to improve the growth of grafted watermelon. Molecules 22(7):1031. https://doi.org/10.3390/molecules22071031

Guntzer F, Keller C, Meunier JD (2012). Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development 32(1):201-213. https://doi.org/10.1007/s13593-011-0039-8

Ha NMC, Nguyen TH, Wang SL, Nguyen AD (2019). Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Research on Chemical Intermediates 45(1):51-63. https://doi.org/10.1007/s11164-018-3630-7

Halpern M, Bar-Tal A, Ofek M, Minz D, Muller T, Yermiyahu U (2015). The use of biostimulants for enhancing nutrient uptake. Advances in Agronomy 130:141-174. https://doi.org/10.1016/bs.agron.2014.10.001

Harman GE, Doni F, Khadka RB, Uphoff N (2019). Endophytic strains of Trichoderma increase plants’ photosynthetic capability. Journal of Applied Microbiology 130:529-546. https://doi.org/10.1111/jam.14368

Hassnain M, Alam I, Ahmad A, Basit I, Ullah N, Alam I, ... Shair MM (2020). Efficacy of chitosan on performance of tomato (Lycopersicon esculentum L.) plant under water stress condition. Pakistan Journal of Agricultural Research 33(1):27-41. http://doi.org/10.17582/journal.pjar/2020/33.1.27.41

Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants 25(2):313-326. https://doi.org/10.1007/s12298-018-0633-1

Hussain MR, Devi RR, Maji TK (2012). Controlled release of urea from chitosan microspheres prepared by emulsification and cross-linking method. Iranian Polymer Journal 21(8):473-479. https://doi.org/10.1007/s13726-012-0051-0

Hussain S, Sharif M, Ahmad W, Khan F, Nihar H (2018). Soil and plants nutrient status and wheat growth after mycorrhiza inoculation with and without vermicompost. Journal of Plant Nutrition 41(12):1534-1546. https://doi.org/10.1080/01904167.2018.1459687

Ibrahim EA, Ramadan WA (2015). Effect of zinc foliar spray alone and combined with humic acid or/and chitosan on growth, nutrient elements content and yield of dry bean (Phaseolus vulgaris L.) plants sown at different dates. Scientia Horticulturae 184:101-105. https://doi.org/10.1016/j.scienta.2014.11.010

Jindo K, Martim SA, Navarro EC, Pérez-Alfocea F, Hernandez T, Garcia C, ... Canellas LP (2012). Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant and Soil 353(1):209-220. https://doi.org/10.1007/s11104-011-1024-3

Kashyap PL, Xiang X, Heiden P (2015). Chitosan nanoparticle-based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules 77:36-51. https://doi.org/10.1016/j.ijbiomac.2015.02.039

Kaur P, Duhan JS, Thakur R (2018). Comparative pot studies of chitosan and chitosan-metal nanocomposites as nano-agrochemicals against fusarium wilt of chickpea (Cicer arietinum L.). Biocatalysis and Agricultural Biotechnology 14:466-471. https://doi.org/10.1016/j.bcab.2018.04.014

Liang Y, Nikolic M, Bélanger R, Gong H, Song A (2015). Silicon in agriculture. Dordrecht, Springer. https://doi.org/10.1007/978-94-017-9978-2

Liu D, Li Z, Zhu Y, Li Z, Kumar R (2014). Recycled chitosan nanofibril as an effective Cu (II), Pb (II) and Cd (II) ionic chelating agent: adsorption and desorption performance. Carbohydrate Polymers 111:469-476. https://doi.org/10.1016/j.carbpol.2014.04.018

Liu H, Tian W, Li B, Wu G, Ibrahim M, Tao Z, ... Sun G (2012). Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnology Letters 34(12):2291-2298. https://doi.org/10.1007/s10529-012-1035-z

Lombardi N, Caira S, Troise AD, Scaloni A, Vitaglione P, Vinale F, ... Woo SL (2020). Trichoderma applications on strawberry plants modulate the physiological processes positively affecting fruit production and quality. Frontiers in Microbiology 11:1364. https://doi.org/10.3389/fmicb.2020.01364

Mahmood N, Abbasi NA, Hafiz IA, Ali I, Zakia S (2017). Effect of biostimulants on growth, yield and quality of bell pepper cv. Yolo Wonder. Pakistan Journal of Agricultural Sciences 54(2):311-317.

Malerba M, Cerana R (2016). Chitosan effects on plant systems. International Journal of Molecular Sciences 17(7): 996. https://doi.org/10.3390/ijms17070996

Malerba M, Cerana R (2018). Recent advances of chitosan applications in plants. Polymers 10(2):118. https://doi.org/10.3390/polym10020118

Mangallo B, Mallongi A, Musaad I, Taberima S (2020). Slow released fertilizer of Fe2+ and Mn2+ from composite micronutrient chitosan-silica. Systematic Reviews in Pharmacy 11(9):494-498. http://repository.unipa.ac.id:8080/xmlui/handle/123456789/694

Mármol Z, Páez G, Rincón M, Araujo K, Aiello C, Chandler C, Gutiérrez E (2011). Quitina y Quitosano polímeros amigables. Una revisión de sus aplicaciones [Chitin and chitosan friendly polymers. A review of your applications]. Revista Tecnocientífica URU 1:53-58.

Marschner H (2011). Marschner’s mineral nutrition of higher plants. Academic Press.

Mejdoub‐Trabelsi B, Touihri S, Ammar N, Riahi A, Daami‐Remadi M (2020). Effect of chitosan for the control of potato diseases caused by Fusarium species. Journal of Phytopathology 168(1):18-27. https://doi.org/10.1111/jph.12847

Méndez-Argüello B, Lira-Saldivar RH (2019). Uso potencial de la zeolita en la agricultura sustentable de la nueva revolución verde [Potential use of zeolite in sustainable agriculture of the new green revolution]. Ecosistemas y Recursos Agropecuarios 6(17): 191-193. https://doi.org/10.19136/era.a6n17.1810

Mirbolook A, Rasouli-Sadaghiani M, Sepehr E, Lakzian A, Hakimi M (2020). Synthesized Zn(II)-amino acid and -chitosan chelates to increase Zn uptake by bean (Phaseolus vulgaris) plants. Journal of Plant Growth Regulation 40:831-847. https://doi.org/10.1007/s00344-020-10151-y

Mondal M, Puteh AB, Dafader NC (2016). Foliar application of chitosan improved morphophysiological attributes and yield in summer tomato (Solanum lycopersicum). Pakistan Journal of Agricultural Sciences 53(2):339-344. https://doi.org/10.21162/PAKJAS/16.2011

Morin-Crini N, Lichtfouse E, Torri G, Crini G (2019). Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environmental Chemistry Letters 17(4):1667-1692. https://doi.org/10.1007/s10311-019-00904-x

Mujtaba M, Khawar KM, Camara MC, Carvalho LB, Fraceto LF, Morsi RE, … Wang D (2020). Chitosan-based delivery systems for plants: A brief overview of recent advances and future directions. International Journal of Biological Macromolecules 154:683-697. https://doi.org/10.1016/j.ijbiomac.2020.03.128

Mukherjee A, Patel JS (2020). Seaweed extract: biostimulator of plant defense and plant productivity. International Journal of Environmental Science and Technology 17(1):553-558. https://doi.org/10.1007/s13762-019-02442-z

Nguyen VT, Tran TH (2013). Application of chitosan solutions for rice production in Vietnam. African Journal of Biotechnology 12(4):382-384. https://doi.org/10.5897/ajb12.2884

Olawuyi IF, Park JJ, Lee JJ, Lee WY (2019). Combined effect of chitosan coating and modified atmosphere packaging on fresh‐cut cucumber. Food Science & Nutrition 7(3):1043-1052. https://doi.org/10.1002/fsn3.937

Orzali L, Corsi B, Forni C, Riccioni L (2017). Chitosan in agriculture: a new challenge for managing plant disease. Biological Activities and Application of Marine Polysaccharides 17-36. https://doi.org/10.5772/66840

Osuna-Ávila P, Flores-Margez JP, Corral-Díaz B (2021). Dinámica estacional de micorrizas arbusculares y hongos septados endofíticos oscuros en asociación con raíces de Solanum elaeagnifolium Cav. [Seasonal dynamics of arbuscular mycorrhizae and dark endophytic septate fungi in association with roots of Solanum elaeagnifolium Cav.] Botanical Sciences 99(2):291-304. https://doi.org/10.17129/botsci.2769

Pichyangkura R, Chadchawan S (2015). Biostimulant activity of chitosan in horticulture. Scientia Horticulturae 196:49-65. https://doi.org/10.1016/j.scienta.2015.09.031

Piras AM, Maisetta G, Sandreschi S, Esin S, Gazzarri M, Batoni G, Chiellini F (2014). Preparation, physical–chemical and biological characterization of chitosan nanoparticles loaded with lysozyme. International Journal of Biological Macromolecules 67:124-131. https://doi.org/10.1016/j.ijbiomac.2014.03.016

Quilty JR, Cattle SR (2011). Use and understanding of organic amendments in Australian agriculture: a review. Soil Research 49(1):1-26. https://doi.org/10.1071/SR10059

Reyes GE, Cortés JD (2017). Intensidad en el uso de fertilizantes en América Latina y el Caribe (2006-2012) [Fertilizer use intensity in Latin America and the Caribbean]. Bioagro 29(1):45-52.

Riva R, Ragelle H, des Rieux A, Duhem N, Jérôme C, Préat V (2011). Chitosan and chitosan derivatives in drug delivery and tissue engineering. In: Chitosan for biomaterials II. Springer, Berlin, Heidelberg, pp 19-44.

Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR (2014). A meta-analysis and review of plant-growth response to humic substances. Advances in Agronomy 37-89. https://doi.org/10.1016/b978-0-12-800138-7.00002-4

Rouphael Y, Colla G (2018). Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Frontiers in Plant Science 9:1655. https://doi.org/10.3389/fpls.2018.01655

Ruzzi M, Aroca R (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae 196:124-134. https://doi.org/10.1016/j.scienta.2015.08.042

Saa S, Rio OD, Castro S, Brown PH (2015). Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] DA Webb). Frontiers in Plant Science 6:87. https://doi.org/10.3389/fpls.2015.00087

Saharan V, Kumaraswamy RV, Choudhary RC, Kumari S, Pal A, Raliya R, Biswas P (2016). Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. Journal of Agricultural and Food Chemistry 64(31):6148-6155. https://doi.org/10.1021/acs.jafc.6b02239

Salimi A, Oraghi-Ardebili Z, Salehibakhsh M (2019). Potential benefits of foliar application of chitosan and Zinc in tomato. Iranian Journal of Plant Physiology 9(2):2703-2708. https://doi.org/10.22034/IJPP.2019.664574

Samarah NH, Wang H, Welbaum GE (2016). Pepper (Capsicum annuum) seed germination and vigour following nanochitin, chitosan or hydropriming treatments. Seed Science and Technology 44(3):609-623. https://doi.org/10.15258/sst.2016.44.3.18

Sampathkumar K, Tan KX, Loo SCJ (2020). Developing nano-delivery systems for agriculture and food applications with nature-derived polymers. Iscience 23(5):101055. https://doi.org/10.1016/j.isci.2020.101055

Sathiyabama M, Akila G, Charles RE (2014). Chitosan-induced defence responses in tomato plants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer. Archives of Phytopathology and Plant Protection 47(16):1963-1973. https://doi.org/10.1080/03235408.2013.863497

Sharif R, Mujtaba M, Ur Rahman M, Shalmani A, Ahmad H, Anwar T, Wang X (2018). The multifunctional role of chitosan in horticultural crops; a review. Molecules 23(4):872. https://doi.org/10.3390/molecules23040872

Shehata SA, Fawzy ZF, El-Ramady HR (2012). Response of cucumber plants to foliar application of chitosan and yeast under greenhouse conditions. Australian Journal of Basic and Applied Sciences 6(4):63-71.

Singh MK, Prasad SK (2014). Agronomic aspects of zinc biofortification in rice (Oryza sativa L.). Proceedings of the national academy of sciences, India section B: biological Sciences 84(3):613-623. https://doi.org/10.1007/s40011-014-0329-4

Stirk WA, Tarkowská D, Turečová V, Strnad M, van Staden J (2013). Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. Journal of Applied Phycology 26(1):561-567. https://doi.org/10.1007/s10811-013-0062-z

Swain R, Rout GR (2017). Silicon in agriculture. In: Sustainable Agriculture Reviews. Springer, Cham. pp 233-260.

Tănase EE, Râpă M, Popa O (2014). Biopolymers based on renewable resources-A review. In: Proceedings of the International Conference Agriculture for Life, Life for Agriculture, Bucharest, Romania, pp 5-7.

Tubana BS, Babu T, Datnoff LE (2016). A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Science 181(9-10):393-411. https://doi.org/10.1097/SS.0000000000000179

Turan V, Ramzani PMA, Ali Q, Abbas F, Iqbal M, Irum A, Khan WUD (2018). Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil. Archives of Agronomy and Soil Science 64(8):1053-1067. https://doi.org/10.1080/03650340.2017.1410542

Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture 4(1):1-12. https://doi.org/10.1186/s40538-017-0089-5

Vasconcelos MW (2014). Chitosan and chitooligosaccharide utilization in phytoremediation and biofortification programs: current knowledge and future perspectives. Frontiers in Plant Science 5:616. https://doi.org/10.3389/fpls.2014.00616

Velásquez CL (2015). Quitosano y nanopartículas. En Nanopartículas: fundamentos y aplicaciones. [Chitosan and nanoparticles. In Nanoparticles: fundamentals and applications], (pp. 203-223), Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela.

Wally OS, Critchley AT, Hiltz D, Craigie JS, Han X, Zaharia LI, ... Prithiviraj B (2013). Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation 32(2):324-339. https://doi.org/10.1007/s00344-012-9301-9

Wilson ME, Basu MR, Bhaskara GB, Verslues PE, Haswell ES (2014). Plastid osmotic stress activates cellular stress responses in Arabidopsis. Plant physiology 165(1):119-128. https://doi.org/10.1104/pp.114.236620

Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017). Biostimulants in plant science: a global perspective. Frontiers in Plant Science 7:2049. https://doi.org/10.3389/fpls.2016.02049

Zhao H, Liu M, Chen Y, Lu J, Li H, Qiao S, ... Glushchenko NN (2019). Pepper plants response to metal nanoparticles and chitosan in nutrient media. Australian Journal of Crop Science 13(3):433-443. https://doi.org/10.21475/ajcs.19.13.03.p1370

Zheng F, Chen L, Zhang P, Zhou J, Lu X, Tian W (2020). Carbohydrate polymers exhibit great potential as effective elicitors in organic agriculture: A review. Carbohydrate Polymers 230:115637. https://doi.org/10.1016/j.carbpol.2019.115637

Published

2022-03-14

How to Cite

PALACIO-MÁRQUEZ, A., RAMÍREZ-ESTRADA, C. A., SÁNCHEZ, E., OJEDA-BARRIOS, D. L., CHÁVEZ-MENDOZA, C., SIDA-ARREOLA, J. P., & PRECIADO-RANGEL, P. (2022). Use of biostimulant compounds in agriculture: chitosan as a sustainable option for plant development. Notulae Scientia Biologicae, 14(1), 11124. Retrieved from https://notulaebiologicae.ro/index.php/nsb/article/view/11124

Issue

Section

Review articles

Most read articles by the same author(s)