Extraction of nutrients from Rumex vesicarius, a wild indigenous edible plant from United Arab Emirates

Authors

  • Reem A.S. ALKAABI United Arab Emirates University, College of Agriculture and Veterinary Medicine, Department of Integrative Agriculture, PO Box No. 15551, Al Ain (AE)
  • Hasan H. BANI MATAR United Arab Emirates University, College of Agriculture and Veterinary Medicine, Department of Integrative Agriculture, PO Box No. 15551, Al Ain (AE)
  • Kandhan KARTHISHWARAN United Arab Emirates University, College of Agriculture and Veterinary Medicine, Department of Integrative Agriculture, PO Box No. 15551, Al Ain (AE)
  • Zienab F.R. AHMED United Arab Emirates University, College of Agriculture and Veterinary Medicine, Department of Integrative Agriculture, PO Box No. 15551, Al Ain (AE)
  • Shyam KURUP United Arab Emirates University, College of Agriculture and Veterinary Medicine, Department of Integrative Agriculture, PO Box No. 15551, Al Ain (AE)
  • Mohammed SALEM ALYAFEI United Arab Emirates University, College of Agriculture and Veterinary Medicine, Department of Integrative Agriculture, PO Box No. 15551, Al Ain (AE)
  • Abdul JALEEL United Arab Emirates University, College of Agriculture and Veterinary Medicine, Department of Integrative Agriculture, PO Box No. 15551, Al Ain (AE)

DOI:

https://doi.org/10.55779/nsb15311658

Keywords:

antioxidants, edible wild plant, phytochemical analysis, proximate composition

Abstract

In the present study, an attempt has been done to explore the phytochemicals and proximate compositions from an edible plant Rumex vesicarius, which is found in the wild habitats in United Arab Emirates. Extracts were prepared from the dried powder of the areal parts of the plant using methanol as solvent in Soxhlet. The extract was tested for phytochemicals and also studied for the proximate composition. The antioxidant power of the extract was determined by using four different assays (ABTS, DPPH, superoxide anion and hydroxyl radical scavenging activity). The results revealed that the extracts contain phytochemicals, which can be used as effective radical scavengers. The antioxidant activities were highly significant in the extract, which shows that this plant has high potential to be used in traditional and alternative medical systems. The present information would be of helpful for the future isolation and pharmacologically active compound identification from this plant.

Metrics

Metrics Loading ...

References

Alfawaz MA (2006). Chemical composition of hummayd (Rumex vesicarius) grown in Saudi Arabia. Journal of Food Composition and Analysis 19(6-7):552-555. http://dx.doi.org/10.1016/j.jfca.2004.09.004

Alfawaz, M. A. (2006). Chemical composition of hummayd (Rumex vesicarius) grown in Saudi Arabia. Journal of Food Composition and Analysis, 19(6-7), 552-555.

Alhimaidi AR, Ammari AA, Okla MK, Algadi MQ, Amran RA, Alhusayni HI, Alhimaidi MA (2021). The impact of Rumex vesicarius seed water extracts on mice fertility. Environmental Science and Pollution Research 29(8):11524-11533. https://doi.org/10.1007/s11356-021-16335-7

Alsamri H, Athamneh K, Pintus G, Eid AH, Iratni R (2021). Pharmacological and antioxidant activities of Rhus coriaria L. (Sumac). Antioxidants 10:73. https://doi.org/10.3390/antiox10010073

Ammar N, Ayoub N, El-Ahmady S, El-Kassem L, Zeid E (2015). Phytochemical and cytotoxic studies of Rumex pictus forssk. and Rumex vesicarius L. (family Polygonaceae), growing in Egypt. European Journal of Medicinal Plants 10(3):1-13. https://doi.org/10.9734/EJMP/2015/19830

AOAC (1990). Official Methods of Analysis, Association of Analytical Chemists. 15th ed., Washington D. C. USA. 1121-1180.

AOAC (1995). Official Methods of Analysis. Association of Official Analytical Chemists. In: Horwitz W (Ed). Washington, DC, USA.

Beddou F, Bekhechi C, Ksouri R, Chabane Sari D, Atik Bekkara F (2015). Potential assessment of Rumex vesicarius L. as a source of natural antioxidants and bioactive compounds. Journal of Food Science and Technology 52(6):3549-3560. https://doi.org/10.1007%2Fs13197-014-1420-9

Bhatt SK, Nanjarajurs SM, Eligar SM (2022). In vitro lipoxygenase and hemolysis inhibition by polyphenolic antioxidants from tropical green leafy vegetables. Emirates Journal of Food and Agriculture 34(7). https://doi.org/10.9755/ejfa.2022.v34.i7.2897

Brand-Williams W, Cuvelier ME, Berset CLWT (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28(1):25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Chang SK, Alasalvar C, Shahidi F (2019). Superfruits: Phytochemicals, antioxidant efficacies, and health effects–A comprehensive review. Critical Reviews in Food Science and Nutrition 59(10):1580-1604. https://doi.org/10.1080/10408398.2017.1422111

Cosme P, Rodríguez AB, Espino J, Garrido M (2020). Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants 9(12):1263. https://doi.org/10.3390/antiox9121263

Edeoga HO, Okwu DE, Mbaebie BO (2005). Phytochemical constituents of some Nigerian medicinal plants. African Journal of Biotechnology 4(7):685-688. https://doi.org/10.5897/AJB2005.000-3127

El‐Hawary SA, Sokkar NM, Ali ZY, Yehia MM (2011). A profile of bioactive compounds of Rumex vesicarius L. Journal of Food Science 76(8):C1195-C1202. https://doi.org/10.1111/j.1750-3841.2011.02370.x

Favela‐González KM, Hernández‐Almanza AY, De la Fuente‐Salcido NM (2020). The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. Journal of Food Biochemistry 44(10):e13414. https://doi.org/10.1111/jfbc.13414

Ghasemzadeh A, Jaafar HZ, Bukhori MFM, Rahmat MH, Rahmat A (2018). Assessment and comparison of phytochemical constituents and biological activities of bitter bean (Parkia speciosa Hassk.) collected from different locations in Malaysia. Chemistry Central Journal 12(1):1-9. https://doi.org/10.1186/s13065-018-0377-6

Hameed I, Dastagir G (2009). Nutritional analyses of Rumex hastatus D. Don, Rumex dentatus Linn and Rumex nepalensis Spreng. African Journal of Biotechnology 8(17):4131-4133.

Harborne AJ (1998). Phytochemical methods a guide to modern techniques of plant analysis. Springer Science & Business Media.

Harborne JB, Baxter E, Harborne JB, Baxter H (1999). The handbook of natural flavonoids, vol. 2 Wiley. New York.

Hasan M, El-Shehawi AM, Elseehy MM, Reza M, Haque A (2021). R. vesicarius L. exerts nephroprotective effect against cisplatin-induced oxidative stress. BMC Complementary Medicine and Therapies 21(1):1-12. https://doi.org/10.1186/s12906-021-03398-9

Idris OA, Wintola OA, Afolayan AJ (2019). Comparison of the proximate composition, vitamins (ascorbic acid, α-tocopherol and retinol), anti-nutrients (phytate and oxalate) and the GC-MS analysis of the essential oil of the root and leaf of Rumex crispus L. Plants 8:51. https://doi.org/10.3390/plants8030051

Khan IA, Hussain M, Hussain N, Alqahtani AM, Alqahtani T (2022) Cardioprotective effect of Rumex vesicarius Linn. leaf extract against catecholamine-induced cardiotoxicity. Molecules 27:3383. https://doi.org/10.3390/molecules27113383

Krishnaiah D, Sarbatly R, Nithyanandam R (2011). A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Processing 89(3):217-233. https://doi.org/10.1016/j.fbp.2010.04.008

Lee SE, Hwang HJ, Ha JS, Jeong HS, Kim JH (2003). Screening of medicinal plant extracts for antioxidant activity. Life Sciences 73(2):167-179. https://doi.org/10.1016/s0024-3205(03)00259-5

Lourenço SC, Moldão-Martins M, Alves VD (2019). Antioxidants of natural plant origins: from sources to food industry applications. Molecules 24:4132. https://doi.org/10.3390/molecules24224132

Maheshwari S, Kumar V, Bhadauria G, Mishra A (2022). Immunomodulatory potential of phytochemicals and other bioactive compounds of fruits: A review. Food Frontiers 3(2):221-238. https://doi.org/10.1002/fft2.129

Mostafa HAM, Elbakry AA, Eman AA (2011). Evaluation of antibacterial and antioxidant activities of different plant parts of Rumex vesicarius L. (Polygonaceae). International Journal of Pharmacy and Pharmaceutical Sciences 3(2):109-118.

Nishimiki M, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulphate and molecular oxygen. Biochemical and Biophysical Research Communications 46:849-853. https://doi.org/10.1016/S0006-291X(72)80218-3

Prasad PSH, Ramakrishnan N (2011). Evaluation of nitric oxide scavenging activity of Rumex vesicarius L. Asian Journal of Research in Chemistry 4(9):1482-1484. https://doi.org/10.1248/bpb.27.170

Sakkir S, Kabshawi M, Mehairbi M (2012). Medicinal plants diversity and their conservation status in the United Arab Emirates (UAE). Journal of Medicinal Plants Research 6(7):1304-1322.

Salama SA, Al-Faifi ZE, Masood MF, El-Amier YA (2022). Investigation and biological assessment of Rumex vesicarius L. extract: characterization of the chemical components and antioxidant, antimicrobial, cytotoxic, and anti-dengue vector activity. Molecules 27(10):3177. https://doi.org/10.3390/molecules27103177

Singleton VL, Rossi JA (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16(3):144-158. https://doi.org/10.5344/ajev.1965.16.3.144

Tabaasum S, Sarawar S, Mahadi SFA, Islam SN (2021). Anti-inflammatory activity of ethnic vegetables osonshak (Spilanthes calva) and chikipung (Rumex vesicarius) in animal model. Pharmacology & Pharmacy 12(4):85-90. https://doi.org/10.4236/pp.2021.124008

Tajdar HK, Majid AG, Nasir AS, Aftab A, Mohd Nazam A (2014). Antioxidant potential of Rumex vesicarius L.: in vitro approach. Asian Pacific Journal of Tropical Biomedicine 4(7):538-544. https://doi.org/10.12980%2FAPJTB.4.2014C1168

USEPA United States Environmental Protection Agency (1994). Method 200.8, Revision 5.4 Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma–Mass Spectrometry.

Van Wyk AS, Prinsloo G (2018). Medicinal plant harvesting, sustainability and cultivation in South Africa. Biological Conservation 227:335-342. https://doi.org/10.1016/j.biocon.2018.09.018

Vasas A, Orbán-Gyapai O, Hohmann J (2015). The genus Rumex: Review of traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology 175:198-228. https://doi.org/10.1016/j.jep.2015.09.001

Wolfenden BS, Willson RL (1982). Radical-cations as reference chromogens in kinetic studies of ono-electron transfer reactions: pulse radiolysis studies of 2, 2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Journal of the Chemical Society, Perkin Transactions 2(7):805-812. https://doi.org/10.1039/P29820000805

Xiu-Qin L, Chao J, Yan-Yan S, Min-Li Y, Xiao-Gang C (2009) Analysis of synthetic antioxidants and preservatives in edible vegetable oil by HPLC/TOF-MS. Food Chemistry 113:692-700. https://doi.org/10.1016/j.foodchem.2008.07.072

Younes KM, Romeilah RM, El-Beltagi HS, Hani EL, Rajendrasozhan S, El-Shemy HA, Shalaby EA (2021). In-vitro evaluation of antioxidant and antiradical potential of successive extracts, semi-purified fractions and biosynthesized silver nanoparticles of Rumex vesicarius. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49(1):12293-12293. https://doi.org/10.15835/nbha49112293

Zhishen J, Mengcheng T, Jianming W (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64(4):555-559. https://doi.org/10.1016/S0308-8146(98)00102-2

Published

2023-09-28

How to Cite

ALKAABI, R. A., BANI MATAR, H. H., KARTHISHWARAN, K., AHMED, Z. F., KURUP, S., SALEM ALYAFEI, M., & JALEEL, A. (2023). Extraction of nutrients from Rumex vesicarius, a wild indigenous edible plant from United Arab Emirates . Notulae Scientia Biologicae, 15(3), 11658. https://doi.org/10.55779/nsb15311658

Issue

Section

Research articles
CITATION
DOI: 10.55779/nsb15311658

Most read articles by the same author(s)