Mechanism-based antioxidant activity of Rubiaceae species collected from Ilocos Norte, Philippines

Authors

  • John D.J. ESGUERRA University of Santo Tomas, College of Science, Manila (PH)
  • Julia M.M. BERNARDO University of Santo Tomas, College of Science, Manila (PH)
  • Kiara M.S. GIMAO University of Santo Tomas, College of Science, Manila (PH)
  • Marinell E.T. PERALTA University of Santo Tomas, College of Science, Manila (PH)
  • Christopher J.A. TIU University of Santo Tomas, College of Science, Manila (PH)
  • Gerald G.A. HERNANDEZ University of Santo Tomas, The Graduate School, Manila (PH)
  • Grecebio J.D. ALEJANDRO University of Santo Tomas, College of Science, Manila; University of Santo Tomas, The Graduate School, Manila; University of Santo Tomas, Research Center for the Natural and Applied Sciences, Manila (PH)
  • Mario A. TAN University of Santo Tomas, College of Science, Manila; University of Santo Tomas, The Graduate School, Manila; University of Santo Tomas, Research Center for the Natural and Applied Sciences, Manila (PH)

DOI:

https://doi.org/10.55779/nsb16211888

Keywords:

antioxidant, DPPH, Guettarda, Psychotria, Rubiaceae, total phenolic content, total flavonoid content

Abstract

The Rubiaceae family, comprising 550 species in the Philippines, is a significant source of bioactive components with ethnopharmacological uses. This study assessed the total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity of six Rubiaceae species, collected in Ilocos Norte, Philippines: Guettardella microphylla (Bartl. ex DC.) Merr., Timonius ternifolius (Bartl. ex DC.) Fern.-Vill., Kanapia monstrosa (A. Rich.) Arriola & Alejandro, Pyrostria triflora Arriola, Calaramo & Alejandro, Pyrostria subsessilifolia (Merr.) Arriola & Alejandro, and Psychotria luzoniensis (Cham. & Schltdl.) Fern.-Vill. Identification of the plant species was done using morphological characterization. The TFC results ranged between 1.86-3.81 mg quercetin equivalent/g dry weight (GAE/g DW), while TPC indicated 5.47-17.17 mg gallic acid equivalent/g dry weight (QE/g DW). G. microphylla showed the highest TFC (3.81±0.20 mg QE/g DW) while P. triflora exhibited the highest TPC (17.17±0.83 mg GAE/g DW). Antioxidant profiling showed P. luzoniensis exhibiting the highest activity in the NOS, ABTS, DPPH, and FRAP assays. G. microphylla showed the highest hydrogen peroxide scavenging activity, while T. ternifolius demonstrated the highest hydroxyl radical scavenging activity. Findings suggest that the crude methanolic extracts of the Rubiaceae species have relatively high TPC and TFC values and exhibit promising antioxidant capacities.

Metrics

Metrics Loading ...

References

Abdennacer B, Karim M, Nesrine R, Mouna D, Mohamed B (2015). Determination of phytochemicals and antioxidant activity of methanol extracts obtained from the fruit and leaves of Tunisian Lycium intricatum Boiss. Food Chemistry 174:577-584. https://doi.org/10.1016/j.foodchem.2014.11.114

Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, ... D'Alessandro U (2011). Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malaria Journal 10:144. https://doi.org/10.1186/1475-2875-10-144

Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6(4):42. https://doi.org/10.3390/plants6040042

Amarowicz R, Pegg RB, Rahimi-Moghaddam P, Barl B, Weil JA (2004). Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chemistry 84(4):551-562. https://doi.org/10.1016/S0308-8146(03)00278-4

Amarowicz R, Pegg, RB (2019) Natural antioxidants of plant origin. Advances in Food and Nutrition Research 90:1-81. https://doi.org/10.1016/bs.afnr.2019.02.011

Amir Aslani B, Ghobadi S (2016). Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life Sciences 146:163-173. https://doi.org/10.1016/j.lfs.2016.01.014

Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 8(4):96. https://doi.org/10.3390/plants8040096

Batuyong MA, Calaramo MA, Alejandro GJD (2021). Diversity of Rubiaceae in Ilocos Norte, Northwestern Luzon, Philippines: A preliminary checklist, their distribution, and conservation status. Philippine Journal of Science 150(S1):487-502. https://doi.org/10.56899/150.S1.37

Bleasel MD, Peterson GM (2020). Emetine, ipecac, ipecac alkaloids and analogues as potential antiviral agents for coronaviruses. Pharmaceuticals 13(3):51. https://doi.org/10.3390/ph13030051

Boora F, Chirisa E, Mukanganyama S (2014). Evaluation of nitrite radical scavenging properties of selected Zimbabwean plant extracts and their phytoconstituents. Journal of Food Processing 2014:918018. https://doi.org/10.1155/2014/918018

Chaves N, Santiago A, Alías JC (2020). Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants 9(1):76. https://doi.org/10.3390/antiox9010076

Chen X (2019). A review on coffee leaves: Phytochemicals, bioactivities and applications. Critical Reviews in Food Science and Nutrition 59(6):1008-1025. https://doi.org/10.1080/10408398.2018.1546667

Choung WJ, Hwang SH, Ko DS, Kim SB, Kim SH, Jeon SH, Choi HD, Lim SS, Shim JH (2017). Enzymatic synthesis of a novel kaempferol-3-O-β-D-glucopyranosyl-(1→4)-O-α-D-glucopyranoside using cyclodextrin glucanotransferase and its inhibitory effects on aldose reductase, inflammation, and oxidative stress. Journal of Agricultural and Food Chemistry 65(13):2760-2767. https://doi.org/10.1021/acs.jafc.7b00501

Clarke G, Ting KN, Wiart C, Fry J (2013). High Correlation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants 2(1):1–10. https://doi.org/10.3390/antiox2010001

Cornago DF, Rumbaoa RG, Geronimo IM (2011). Philippine yam (Dioscorea spp.) tubers phenolic content and antioxidant capacity. Philippine Journal of Science 140(2):145-152.

Csonka C, Páli T, Bencsik P, Görbe A, Ferdinandy P, Csont T (2015). Measurement of NO in biological samples. British Journal of Pharmacology 172(6):1620-1632. https://doi.org/10.1111/bph.12832

Dash SP, Dixit S, Sahoo S (2017). Phytochemical and biochemical characterizations from leaf extracts from Azadirachta indica: an important medicinal plant. Biochemistry & Analytical Biochemistry 6(2):1000323. https://doi.org/10.4172/2161-1009.1000323

Davis AP, Govaerts R, Bridson DM, Ruhsam M, Moat J, Brummitt NA (2009). A global assessment of distribution, diversity, endemism, and taxonomic effort in the Rubiaceae. Annals of the Missouri Botanical Garden 96(1):68-78. https://doi.org/10.3417/2006205

Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013). Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling 18(14):1818-1892. https://doi.org/10.1089/ars.2012.4581

Di Meo S, Reed TT, Venditti P, Victor VM (2016). Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Medicine and Cellular Longevity 2016:1245049. https://doi.org/10.1155/2016/1245049

Duh PD, Tu YY, Yen GC (1999). Antioxidant activity of water extract of harng jyur (Chrysanthemum morifolium Ramat). LWT - Food Science and Technology 32(5):269-277. https://doi.org/10.1006/fstl.1999.0548

Ebrahimzadeh MA, Nabavi SF, Pourmorad F (2010). Nitric oxide radical scavenging potential of some Elburz medicinal plants. African Journal of Biotechnology 9(32):5212-5217.

Etim OE, Ekanem SE, Sam SM (2013). In vitro antioxidant activity and nitric oxide scavenging activity of Citrullus lanatus seeds. Journal of Natural Sciences Research 3(12):126-132.

Fernando CD, Soysa P (2015). Optimized enzymatic colorimetric assay for determination of hydrogen peroxide (H2O2) scavenging activity of plant extracts. MethodsX 2:283-291. https://doi.org/10.1016/j.mex.2015.05.001

Fitzpatrick LR, Woldemariam T (2017). Small-molecule drugs for the treatment of inflammatory bowel disease. In: Comprehensive Medicinal Chemistry III. Elsevier, pp 495-510. https://doi.org/10.1016/B978-0-12-409547-2.12404-7

Gorinstein S, Martin-Belloso O, Katrich E, Lojek A, Číž M, Gligelmo-Miguel N, Haruenkit R, Park YS, Jung ST, Trakhtenberg S (2003). Comparison of the contents of the main biochemical compounds and the antioxidant activity of some Spanish olive oils as determined by four different radical scavenging tests. The Journal of Nutritional Biochemistry 14(3):154-159. https://doi.org/10.1016/S0955-2863(02)00278-4

Habtemariam S (2019). The chemical and pharmacological basis of okra (Abelmoschus esculentus (L.) Moench) as potential therapy. In: Medicinal foods as potential therapies for type-2 diabetes and associated diseases. Elsevier, pp 307-332.

Heitzman ME, Neto CC, Winiarz E, Vaisberg AJ, Hammond GB (2005). Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). Phytochemistry 66(1):5-29. https://doi.org/10.1016/j.phytochem.2004.10.022

Hernández-Rodríguez P, Baquero LP, Larrota HR (2019). Chapter 14 - Flavonoids: Potential Therapeutic Agents by Their Antioxidant Capacity. In: Campos MRS (Ed). Bioactive Compounds. Woodhead Publishing, pp 265-288. https://doi.org/10.1016/b978-0-12-814774-0.00014-1

Hidalgo M, Sánchez-Moreno C, De Pascual-Teresa S (2010). Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chemistry 121(3):691-696. https://doi.org/10.1016/j.foodchem.2009.12.097

Ilyasov IR, Beloborodov VL, Selivanova IA, Terekhov RP (2020). ABTS/PP decolorization assay of antioxidant capacity reaction pathways. International Journal of Molecular Sciences 21(3):1331. https://doi.org/10.3390/ijms21031131

Karasakal A (2015). Evaluation of Antioxidant activities of Brassica napus’s seeds by CUPRAC, ABTS/Persulphate and DMPD methods. MARMARA Pharmaceutical Journal 19:153-158. https://jrespharm.com/uploads/pdf/pdf_MPJ_375.pdf

Karou SD, Tchacondo T, Ilboudo DP, Simpore J (2011). Sub-Saharan Rubiaceae: a review of their traditional uses, phytochemistry and biological activities. Pakistan Journal of Biological Sciences 14(3):149-169. https://scialert.net/abstract/?doi=pjbs.2011.149.169

Khatun R, Rashid M, Alam AK, Lee YI, Rahman MA (2020). Evaluation of comparative phenolic contents and antioxidant activity of Mikania species available in Bangladesh. Frontiers in Science 10(1):1-6. http://article.sapub.org/10.5923.j.fs.20201001.01.html

Kim HM, Song Y, Hyun GH, Long NP, Park JH, Hsieh YS, Kwon SW (2020). Characterization and antioxidant activity determination of neutral and acidic polysaccharides from Panax ginseng C. A. Meyer. Molecules 25(4):791. https://doi.org/10.3390/molecules25040791

Koksal E, Bursal E, Dikici E, Tozoğlu F, Gülçin I (2011). Antioxidant activity of Melissa officinalis leaves. Journal of Medicinal Plants Research 5(2):217-222.

Kumar S, Pandey AK (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal 2013:162750. https://doi.org/10.1155/2013/162750

Laoué J, Fernandez C, Ormeño E (2022). Plant flavonoids in mediterranean species: A focus on flavonols as protective metabolites under climate stress. Plants 11(2):172. https://doi.org/10.3390/plants11020172

Lei K, Wei W, Liu S, Zhou M, Lin X, Cao X (2016). In vitro antioxidant activity of the anthocyanins in Sageretia theezans Brongn fruit. International Journal of Food Properties 19(1):210-221. https://doi.org/10.1080/10942912.2015.1022261

Liaqat H, Kim KJ, Park SY, Jung SK, Park SH, Lim S, Kim JY (2021). Antioxidant effect of wheat germ extracts and their antilipidemic effect in palmitic acid-induced steatosis in HepG2 and 3T3-L1 cells. Foods 10(5):1061. https://doi.org/10.3390/foods10051061

Lourenço SC, Moldão-Martins M, Alves VD (2019). Antioxidants of natural plant origins: From sources to food industry applications. Molecules 24(22):4132. https://doi.org/10.3390/molecules24224132

Manzione MG, Martorell M, Sharopov F, Bhat NG, Kumar NV, Fokou PV, Pezzani R (2020). Phytochemical and pharmacological properties of asperuloside, a systematic review. European Journal of Pharmacology 883:173344. https://doi.org/10.1016/j.ejphar.2020.173344

Martemucci G, Costagliola C, Mariano M, D’Andrea L, Napolitano P, D’Alessandro G (2022). Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2(2):48-78. https://doi.org/10.3390/oxygen2020006

Martins D, Nunez CV (2015). Secondary metabolites from Rubiaceae species. Molecules 20(7):13422-13495. https://doi.org/10.3390/molecules200713422

Newsholme P, Cruzat VF, Keane KN, Carlessi R, De Bittencourt P (2016). Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochemical Journal 473(24):4527-4550. https://doi.org/10.1042/BCJ20160503C

Ofoedu CE, You L, Osuji CM, Lwouno J, Kabuo NO, Ojukwu M, … Korzeinowska M (2021). Hydrogen peroxide effects on natural-sourced polysacchrides: Free Radical Formation/production, degradation process, and reaction mechanism—A critical synopsis. Foods 10(4):699. https://doi.org/10.3390/foods10040699

Peng X, Shi J, Zhao Z, Tong R, Zhang X, Zhong L (2023). Emetine, a small molecule natural product, displays potent anti-gastric cancer activity via regulation of multiple signaling pathways. Cancer Chemotherapy and Pharmacology 91(4):303-315. https://doi.org/10.1007/s00280-023-04521-y

Phaniendra A, Jestadi DB, Periyasamy L (2014). Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry 30(1):11-26. https://doi.org/10.1007/s12291-014-0446-0

Procházková D, Boušová I, Wilhelmová N (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82(4):513-523. https://doi.org/10.1016/j.fitote.2011.01.018

Rafael S, Artika IM, Nurcholis W (2023). Antioxidant activity and inhibition of α-glucosidase from extract and fraction of leaves and stems of Vernonia amygdalina. International Journal of Advances in Applied Sciences 12(3):274-284. https://doi.org/10.11591/ijaas.v12.i3.pp274-284

Rajurkar NS, Hande SM (2011). Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian Journal of Pharmaceutical Sciences 73(2):146-151. https://doi.org/10.4103/0250-474x.91574

Ramil RJD, Ramil MD, Konno T, Murata T, Kobayashi K, Buyankhishig B, Agrupis S, Sasaki K (2020). A new hexenoic acid glycoside with cytotoxic activity from the leaves of Psychotria luzoniensis. Natural Product Research 35(23):5036-5041. https://doi.org/10.1080/14786419.2020.1765345

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26(9-10):1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Ren PX, Shang WJ, Yin WC, Ge H, Wang L, Zhang XL, ... Bai F (2022). A multi-targeting drug design strategy for identifying potent anti-SARS-CoV-2 inhibitors. Acta Pharmacologica Sinica 43(2):483-493. https://doi.org/10.1038/s41401-021-00668-7

Sarwar R, Farooq U, Khan A, Naz S, Khan S, Khan A, Rauf A, Bahadar H, Uddin R (2015). Evaluation of antioxidant, free radical scavenging, and antimicrobial activity of Quercus incana Roxb. Frontiers in Pharmacology 6:277. https://doi.org/10.3389/fphar.2015.00277

Sena LA, Chandel NS (2012). Physiological roles of mitochondrial reactive oxygen species. Molecular Cell 48(2):158-167. https://doi.org/10.1016/j.molcel.2012.09.025

Shackelford L, Mentreddy SR, Cedric S (2009). Determination of total phenolics, flavonoids and antioxidant and chemopreventive potential of basil (Ocimum basilicum L. and Ocimum tenuiflorum L.). International Journal of Cancer Research 5(4):130-143. https://scialert.net/abstract/?doi=ijcr.2009.130.143

Silva LC, Borgato GB, Wagner VP, Martins MD, Rocha GZ, Lopes MA, ... Vargas PA (2022). Cephaeline is an inductor of histone H3 acetylation and inhibitor of mucoepidermoid carcinoma cancer stem cells. Journal of Oral Pathology & Medicine 51(6):553-562. https://doi.org/10.1111/jop.13252

Singh A, Kukreti R, Saso L, Kukreti S (2019). Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 24(8):1583. https://doi.org/10.3390/molecules24081583

Suksungworn R, Duangsrisai S (2021). Phytochemical contents and antioxidant activity of medicinal plants from the Rubiaceae Family in Thailand. Plant Science Today 8(1):24-31. https://doi.org/10.14719/pst.2021.8.1.882

Treml J, Šmejkal K (2016). Flavonoids as potent scavengers of hydroxyl radicals. Comprehensive Reviews in Food Science and Food Safety 15(4):720-738. https://doi.org/10.1111/1541-4337.12204

Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 5(3):93. https://doi.org/10.3390/medicines5030093

Valadão ALC, Abreu CM, Dias JZ, Arantes P, Verli H, Tanuri A, De Aguiar RS (2015). Natural plant alkaloid (emetine) inhibits HIV-1 replication by interfering with reverse transcriptase activity. Molecules 20(6):11474-11489. https://doi.org/10.3390/molecules200611474

Vongsak B, Sithisarn P, Mangmool S, Thongpraditchote S, Wongkrajang Y, Gritsanapan W (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and Products 44:566-571. https://doi.org/10.1016/j.indcrop.2012.09.021

Wang A, Sun Y, Liu Q, Wu H, Liu J, He J, ... Liu Q (2020). Low dose of emetine as potential anti-SARS-CoV-2 virus therapy: preclinical in vitro inhibition and in vivo pharmacokinetic evidences. Molecular Biomedicine 1:14. https://doi.org/10.1186/s43556-020-00018-9

Watroly MN, Sekar M, Fuloria S, Gan SH, Jeyabalan S, Wu YS, … Fuloria NK (2021). Chemistry, biosynthesis, physicochemical and biological properties of rubiadin: A promising natural anthraquinone for new drug discovery and development. Drug Design, Development and Therapy 2021:4527-4549. https://doi.org/10.2147/dddt.s338548

Weitzberg E, Hezel M, Lundberg JO, Warner DS (2010). Nitrate-nitrite-nitric oxide pathway: implications for anesthesiology and intensive care. Anesthesiology 113(6):1460-1475. https://doi.org/10.1097/ALN.0b013e3181fcf3cc

Wettasinghe M, Shahidi F (1999). Antioxidant and free radical-scavenging properties of ethanolic extracts of defatted borage (Borago officinalis L.) seeds. Food Chemistry 67(4):399-414. https://doi.org/10.1016/S0308-8146(99)00137-5

Yang S, Xu M, Lee EM, Gorshkov K, Shiryaev SA, He S, ... Zheng W (2018). Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discovery 4(1):31. https://doi.org/10.1038/s41421-018-0034-1

Yu GF, Cabrera RC, Bueno PR, Sia IC (2020). The in vitro antioxidant activity and phytochemicals of locally consumed plant foods from Quezon Province, Philippines. Acta Medica Philippina 54(2):151-154. https://doi.org/10.47895/amp.v54i2.1531

Yin Low JS, Chen KC, Wu KX, Mah-LeeNm HCJJ, Chu HJJ (2009). Antiviral activity of emetine dihydrochloride against dengue virus infection. Journal of Antivirals & Antiretrovirals 1:62-71. https://doi.org/10.4172/jaa.1000009

Zeb A (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry 44(9):e13394. https://doi.org/10.1111/jfbc.13394

Zhang Y, Cichewicz RH, Nair MG (2004). Lipid peroxidation inhibitory compounds from daylily (Hemerocallis fulva) leaves. Life Sciences 75(6):753-763. https://doi.org/10.1016/j.lfs.2004.03.002

Downloads

Published

2024-05-20

How to Cite

ESGUERRA, J. D., BERNARDO, J. M., GIMAO, K. M., PERALTA, M. E., TIU, C. J., HERNANDEZ, G. G., ALEJANDRO, G. J., & TAN, M. A. (2024). Mechanism-based antioxidant activity of Rubiaceae species collected from Ilocos Norte, Philippines . Notulae Scientia Biologicae, 16(2), 11888. https://doi.org/10.55779/nsb16211888

Issue

Section

Research articles
CITATION
DOI: 10.55779/nsb16211888