Efficiency of bio-agents and green-synthesized silver nanoparticles in controlling purple blotch disease caused by Alternaria porri in onion plants

Authors

DOI:

https://doi.org/10.55779/nsb16211854

Keywords:

Alternaria, fungicides, onion, Saccharomyces, nanoparticles, Trichoderma

Abstract

One of the most fatal diseases that harm Allium species is purple blotch, which is brought on by Alternaria porri. As the disease's severity rises, crop production may decrease. In this study, 12 isolates of A. porri exhibiting purple blotch symptoms have been isolated from diseased onion plants. Sequencing of the internal transcribed spacer region (ITS) allowed for the identification of the isolate that was the most virulent and caused a disease severity of 85.93%. Under greenhouse and field growing conditions, the efficiency of two bio-agents, Trichoderma asperellum T34 and Saccharomyces cerevisiae AUMC 10203, as well as three doses (50, 25, and 12.5 ppm) of their green-synthesized silver nanoparticles (AgNPs) against purple blotch disease was assessed. For avoiding or treating purple blotch disease in onion plants, it has been demonstrated that the T. asperellum T34 spore suspension was the most effective resulting in a 76% reduction in disease severity. The spore suspension of S. cerevisiae and a 50-ppm dosage of AgNPs were the top contenders for T. asperellum. When compared to the control plants, the plants treated with bio-agents and AgNPs showed a significant decline in disease incidence and disease severity. Additionally, improvements were made to the broadness of inflorescences, the number of flowers and seeds, the weight of seeds per inflorescence, and the seed productivity. Therefore, it is recommended in this study to use T. asperellum T34 spore suspension as a potent bio-agent to manage the symptoms of purple blotch on onions.

Metrics

Metrics Loading ...

References

Abbas Q, Liu G, Yousaf B, Ali MU, Ullah H, Ahmed R (2019). Effects of biochar on uptake, acquisition and translocation of silver nanoparticles in rice (Oryza sativa l.) in relation to growth, photosynthetic traits and nutrients displacement. Environmental Pollution 250:728-736. https://doi.org/10.1016/j.envpol.2019.04.083

Abdel-Hafez SI, Abo-Elyousr KA, Abdel-Rahim IR (2014). Effectiveness of plant extracts to control purple blotch and Stemphylium blight diseases of onion (Allium cepa l.) in Assiut, Egypt. Archives of Phytopathology and Plant Protection 47(3):377-387. https://doi.org/10.1080/03235408.2013.809926

Abdel-Rahim IR, Abdel-Hafez SI, Abo-Elyousr KA (2017). Onion purple blotch symptoms, at Assiut governorate (Egypt), caused by synergistic association between Alternaria porri and Stemphylium vesicarium. Journal of Plant Diseases and Protection 124:195-200. https://doi.org/10.1007/s41348-016-0057-5

Abo‐Elyousr KA, Abdel‐Hafez SI, Abdel‐Rahim IR (2014). Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. Journal of Phytopathology 162(9):567-574. https://doi.org/10.1111/jph.12228

Ahmed M, Amin M, El-Fiki I (2017). Efficacy of bioagents against Alternaria porri incitant of purple blotch of onion in Egypt. Egyptian Journal of Phytopathology 45(1):17-29. https://doi.org/10.21608/ejp.2017.89518

Al-Bedak OA, Moubasher AH (2020). Aspergillus gaarensis, a new addition to section Circumdati from soil of Lake El-Gaar in Wadi-El-Natron, Egypt. Studies in Fungi 5(1):59-65. https://doi.org/10.5943/sif/5/1/5

Al-Bedak OA, Teama EA, Ali E, Said M, Shalaby E, Moharram ZA (2020). Impact of fumigation with phosphine on viability of wheat grains stored for six months at two levels of moisture content, in addition to description of four new records of associated fungi and assessment of their potential for enzymatic production. Journal of Basic & Applied Mycology (Egypt) 11:77-97.

Ali H, Nisha HaC, Hossain MB, Islam MR (2016). Evaluation of combined effect of micronutrients (ZnSO4 + Borax) and fungicides to control the purple blotch complex of onion (Allium cepa). American Journal of Plant Sciences 7(05):715. https://doi.org/10.4236/ajps.2016.75065

Ali MH (2008). Control of purple blotch complex of onion through fertilizer and fungicide application. Dept. of Plant Pathology.

Andersen B, Dongo A, Pryor BM (2008). Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila. Mycological Research 112(2):241-250. https://doi.org/10.1016/j.mycres.2007.09.004

Ansari A, Pervez S, Javed U, Abro MI, Nawaz MA, Qader SAU, Aman A (2018). Characterization and interplay of bacteriocin and exopolysaccharide-mediated silver nanoparticles as an antibacterial agent. International Journal of Biological Macromolecules 115:643-650. https://doi.org/10.1016/j.ijbiomac.2018.04.104

Ashraf H, Batool T, Anjum T, Illyas A, Li G, Naseem S, Riaz S (2022). Antifungal potential of green synthesized magnetite nanoparticles black coffee–magnetite nanoparticles against wilt infection by ameliorating enzymatic activity and gene expression in Solanum lycopersicum l. Frontiers in Microbiology 13:31. https://doi.org/10.3389/fmicb.2022.754292

Azeez L, Adebisi SA, Adetoro RO, Oyedeji AO, Agbaje WB, Olabode OA (2022). Foliar application of silver nanoparticles differentially intervenes remediation statuses and oxidative stress indicators in Abelmoschus esculentus planted on gold-mined soil. International Journal of Phytoremediation 24(4):384-393. https://doi.org/10.1080/15226514.2021.1949578

Camacho-Luna V, Flores-Moctezuma HE, Rodríguez-Monroy M, Montes-Belmont R, Sepúlveda-Jiménez G (2021). Induction of the defense response of onion plants in interaction with Trichoderma asperellum and Alternaria porri. Revista Mexicana de Ciencias Agrícolas 12(4):685-698. https://doi.org/10.29312/remexca.v12i4.2683

Charoenporn C, Kanokmedhakul S, Lin F, Poeaim S, Soytong K (2010). Evaluation of bio-agent formulations to control Fusarium wilt of tomato. African Journal of Biotechnology 9(36). https://doi.org/10.5897/AJB10.260

Chattopadhyay A, Tiwari KK, Chaudhary K, Pratap D (2017). Genic molecular markers in fungi: Availability and utility for bioprospection. Molecular Markers in Mycology: Diagnostics and Marker Developments 151-176. https://doi.org/10.1007/978-3-319-34106-4_18

Chethana B, Girija G, Archana SR, Bellishree K (2018). Morphological and molecular characterization of Alternaria isolates causing purple blotch disease of onion. International Journal of Current Microbiology and Applied Sciences 7(4):3478-3493. https://doi.org/10.20546/ijcmas.2018.704.394

Czarnecka M, Żarowska B, Połomska X, Restuccia C, Cirvilleri G (2019). Role of biocontrol yeasts Debaryomyces hansenii and Wickerhamomyces anomalus in plants' defence mechanisms against Monilinia fructicola in apple fruits. Food Microbiology 83:1-8. https://doi.org/10.1016/j.fm.2019.04.004

Dal Bello G, Monaco C, Rollan M, Lampugnani G, Arteta N, Abramoff C, Ronco L, Stocco M (2008). Biocontrol of postharvest grey mould on tomato by yeasts. Journal of Phytopathology 156(5):257-263. https://doi.org/10.1111/j.1439-0434.2007.01351.x

Dar AA, Sharma S, Mahajan R, Mushtaq M, Salathia A, Ahamad S, Sharma JP (2020). Overview of purple blotch disease and understanding its management through chemical, biological and genetic approaches. Journal of Integrative Agriculture 19(12):3013-3024. https://doi.org/10.1016/S2095-3119(20)63285-3

Datar VV (1993). Investigation on purple blotch of onion in India. In: Proceedings of the International Symposium on Alliums for the Tropics 358:259-264. https://doi.org/10.17660/ActaHortic.1994.358.42

De Melo EA, De Lima R, Mariano R, Laranjeira D, Dos Santos LA, De Omena Gusmão L, Barbosa De Souza E (2015). Efficacy of yeast in the biocontrol of bacterial fruit blotch in melon plants. Tropical Plant Pathology 40:56-64. https://doi.org/10.1007/s40858-015-0008-x

Deshmukh V, Dhruj I, Chavan R (2007). Chemical control of purple blotch (Alternaria porri) (Ellis) cif. of onion. Plant Disease Research 22(1):34-36.

Edgar RC (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5):1792-1797. https://doi.org/10.1093/nar/gkh340

Fangary A, Adam H (2020). Analytical study of the onion crop in Egypt. Scientific Journal of Agricultural Sciences 2(2):216-239. https://10.21608/sjas.2020.48635.1051

Faraz A, Haq IU, Ijaz S, Sahi ST, Khan I (2022). Antimycotic potential assessment of Trichoderma species and fungicides for sustainable management of Sclerotinia trifoliorum causing stem and crown rot of Trifolium alexandrinum l. International Journal of Phytopathology 11(2):195-205. https://doi.org/10.33687/phytopath.011.02.4271

Felsenstein J (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39(4):783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Feng M, Lv Y, Li T, Li X, Liu J, Chen X, Zhang Y, Chen X, Wang A (2021). Postharvest treatments with three yeast strains and their combinations to control Botrytis cinerea of snap beans. Foods 10(11):2736. https://doi.org/10.3390/foods10112736

Fitzpatrick DA (2012). Horizontal gene transfer in fungi. FEMS Microbiology Letters 329(1):1-8. https://doi.org/10.1111/j.1574-6968.2011.02465.x

Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q (2019). Biocontrol yeasts: Mechanisms and applications. World Journal of Microbiology and Biotechnology 35:1-19. https://doi.org/10.1007/s11274-019-2728-4

Gao D, Li M, Zhang J, Song D, Sun H, Qiao L, Zhao R (2021). Improvement of chlorophyll content estimation on maize leaf by vein removal in hyperspectral image. Computers and Electronics in Agriculture 184:106077. https://doi.org/10.1016/j.compag.2021.106077

Gao X, Hu S, Liu Z, Zhu H, Yang J, Han Q, Fu Y, Miao J, Gu B, Liu X (2022). Analysis of resistance risk and resistance‐related point mutations in cyt b of qioi fungicide ametoctradin in Phytophthora litchii. Pest Management Science 78(7):2921-2930. https://doi.org/10.1002/ps.6916

Gautam N, Salaria N, Thakur K, Kukreja S, Yadav N, Yadav R, Goutam U (2020). Green silver nanoparticles for phytopathogen control. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 90:439-446. https://doi.org/10.1007/s40011-019-01115-8

Ghareeb RY, Shams El-Din NGE-D, Maghraby DME, Ibrahim DS, Abdel-Megeed A, Abdelsalam NR (2022). Nematicidal activity of seaweed-synthesized silver nanoparticles and extracts against Meloidogyne incognita on tomato plants. Scientific Reports 12(1):3841. https://doi.org/10.1038/s41598-022-06600-1

Golden D, Beuchat L, Brackett R (1988). Direct plating technique for enumeration of Listeria monocytogenes in foods. Journal-Association of Official Analytical Chemists 71(3):647-650. https://doi.org/10.1093/jaoac/71.3.647

Gomez KA, Gomez AA (1984). Statistical procedures for agricultural research John Wiley & Sons.

Gore P, Ingle R, Rakhonde P (2021). Management of purple blotch of onion caused by Alternaria porri. Journal of Plant Disease Science 16(1):47-51. https://doi.org/10.48165/

Gothandapani S, Boopalakrishnan G, Prabhakaran N, Chethana B, Aravindhan M, Saravanakumar M, Ganeshan G (2015). Evaluation of entomopathogenic fungus against Alternaria porri (Ellis) causing purple blotch disease of onion. Archives of Phytopathology and Plant Protection 48(2):135-144. https://doi.org/10.1080/03235408.2014.884532

Guo W, Yang Y, Zhao H, Song R, Dong P, Jin Q, Baig MHA, Liu Z, Yang Z (2021). Winter wheat take-all disease index estimation model based on hyperspectral data. Applied Sciences 11(19):9230. https://doi.org/10.3390/app11199230

Gupta R, Pandey N, Gupta R (2014). Management of purple blotch (Alternaria porri) disease of garlic (Allium sativum l.). In: Proceedings of the Abstract, IV National Symposium on Plant protection in horticultural crops: Emerging challenges and sustainable pest management organized at Indian Institute of Horticultural Research, Bengaluru held on, pp 25-28.

Hasna M (2021). Study on efficacy of Trichoderma in biological control against purple blotch of onion. Bangladesh Journal of Nuclear Agriculture 35:135-143.

Huang Y, Bai L, Yang Y, Yin Z, Guo B (2022). Biodegradable gelatin/silver nanoparticle composite cryogel with excellent antibacterial and antibiofilm activity and hemostasis for Pseudomonas aeruginosa-infected burn wound healing. Journal of Colloid and Interface Science 608:2278-2289. https://doi.org/10.1016/j.jcis.2021.10.131

Huy TQ, Thanh NTH, Thuy NT, Van Chung P, Hung PN, Le A-T, Hanh NTH (2017). Cytotoxicity and antiviral activity of electrochemical–synthesized silver nanoparticles against Poliovirus. Journal of Virological Methods 241:52-57. https://doi.org/10.1016/j.jviromet.2016.12.015

Jijakli H, Choutka C, Lepoivre P (1993). Formulation and integrated use of two antagonistic yeasts to postharvest treatments against diseases on apples. In: Proceedings of the Proceedings of an EC Workshop: Biological control of fruit and Foliar diseases.

Kareem MA, Murthy K, Hasansab AN, Waseem M (2012). Effect of temperature, relative humidity and light on lesion length due to Alternaria porri in onion. BIOINFOLET-A Quarterly Journal of Life Sciences 9(3):264-266.

Karthikeyan M, Radhika K, Bhaskaran R, Mathiyazhagan S, Sandosskumar R, Velazhahan R, Alice D (2008). Biological control of onion leaf blight disease by bulb and foliar application of powder formulation of antagonist mixture. Archives of Phytopathology and Plant Protection 41(6):407-417. https://doi.org/10.1080/03235400600813474

Kim MY, Han JW, Dang QL, Kim J-C, Kim H, Choi GJ (2022). Characterization of Alternaria porri causing onion purple blotch and its antifungal compound magnolol identified from Caryodaphnopsis baviensis. Plos One 17(1):e0262836. https://doi.org/10.1371/journal.pone.0262836

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6):1547. https://doi.org/10.1093/molbev/msy096

Kumar VKR, Gopidas KR (2010). Synthesis and characterization of gold‐nanoparticle‐cored dendrimers stabilized by metal–carbon bonds. Chemistry–An Asian Journal 5(4):887-896. https://doi.org/10.1002/asia.200900388

Lalau CM, Simioni C, Vicentini DS, Ouriques LC, Mohedano RA, Puerari RC, Matias WG (2020). Toxicological effects of AgNPs on duckweed (Landoltia punctata). Science of the Total Environment 710:136318. https://doi.org/10.1016/j.scitotenv.2019.136318

Madbouly AK, Elyousr KaA, Ismail IM (2020). Biocontrol of Monilinia fructigena, causal agent of brown rot of apple fruit, by using endophytic yeasts. Biological Control 144:104239. http://dx.doi.org/10.1016/j.biocontrol.2020.104239

Madhavi M, Kavitha A, Vijayalakshmi M (2012). Studies on Alternaria porri (Ellis) ciferri pathogenic to onion (Allium cepa l.). Archives of Applied Science Research 4(1):1-9.

Mamgain A, Roychowdhury R, Tah J (2013). Alternaria pathogenicity and its strategic controls. Research Journal of Biology 1:1-9.

Mandal D, Pal R, Kar I (2022). Effect of weather parameters on the progression and development of purple blotch of onion. Journal of Agrometeorology 24(3):325-327. http://dx.doi.org/10.54386/jam.v24i3.1676

Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, … Gupta VK (2017). Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Frontiers in Plant Science 8:172. https://doi.org/10.3389/fpls.2017.00172

Mishra R, Gupta R (2012). In vitro evaluation of plant extracts, bio-agents and fungicides against purple blotch and Stemphylium blight of onion. Journal of Medicinal Plants Research 6(48):5840-5843. https://doi.org/10.5897/JMPR10.246

Mohsin SM, Islam MR, Ahmmed ANF, Nisha HaC, Hasanuzzaman M (2016). Cultural, morphological and pathogenic characterization of Alternaria porri causing purple blotch of onion. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 44(1):222-227. https://doi.org/10.15835/nbha44110110

Moriguchi K, Yamamoto S, Tanaka K, Kurata N, Suzuki K (2013). Trans-kingdom horizontal DNA transfer from bacteria to yeast is highly plastic due to natural polymorphisms in auxiliary nonessential recipient genes. PLoS One 8(9):e74590. https://doi.org/10.1371%2Fjournal.pone.0074590

Moubasher AH, Ismail MA, Al-Bedak OA, Mohamed RA (2019). Ramophialophora chlamydospora, a new species from an alkaline Lake of Wadi-El-Natron, Egypt. Asian Journal of Mycology 2(1):110-117.

Oecd FAO (2022). Oecd-fao agricultural outlook 2022-2031.

Owaid MN, Rabeea MA, Aziz AA, Jameel MS, Dheyab MA (2022). Mycogenic fabrication of silver nanoparticles using picoa, pezizales, characterization and their antifungal activity. Environmental Nanotechnology, Monitoring & Management 17:100612. http://dx.doi.org/10.1016/j.enmm.2021.100612

Özer N, Köycü ND (2004). Seed-borne fungal diseases of onion, and their control. Fruit and Vegetable Diseases 281-306. http://dx.doi.org/10.1007/0-306-48575-3_8

Pandin C, Le Coq D, Canette A, Aymerich S, Briandet R (2017). Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? Microbial Biotechnology 10(4):719-734. https://doi.org/10.1111/1751-7915.12693

Posada D, Crandall KA (1998). Modeltest: Testing the model of DNA substitution. Bioinformatics (Oxford, England) 14(9):817-818. https://doi.org/10.1093/bioinformatics/14.9.817

Prakasam V, Sharma P (2012). Trichoderma harzianum (Th-3) a potential strain to manage the purple blotch of onion (Allium cepa l.) caused by Alternaria porri under north Indian plains. Journal of Agricultural Science 4(10):266. http://dx.doi.org/10.5539/jas.v4n10p266

Priya R, Sataraddi A, Darshan S (2015). Efficacy of non-systemic and systemic fungicides against purple blotch of onion (Allium cepa l.) caused by Alternaria porri (Ellis) cif. International Journal of Recent Scientific Research 6(9):6519-6521.

Rastogi A, Zivcak M, Tripathi D, Yadav S, Kalaji H, Brestic M (2019). Phytotoxic effect of silver nanoparticles in Triticum aestivum: Improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica 57(1):209-216. http://dx.doi.org/10.32615/ps.2019.019

Rawat K, Kurechia N, Vandre R, Jogi J, Tandia N, Shivhare M, Shakkarpude J, Patil A, Shrivastava N, Caesar D (2022). Application of nanotechnology in veterinary science. Annals of Forest Research 65(1):7047-7076.

Razdan V, Shahnaz E, Kumar S (2011). Influence of weather parameters on purple blotch of onion. Indian Phytopathology 61(1):90-94.

Rhouma A, Mehaoua MS, Mougou I, Rhouma H, Shah KK, Bedjaoui H (2023). Combining melon varieties with chemical fungicides for integrated powdery mildew control in Tunisia. European Journal of Plant Pathology 165(1):189-201. http://dx.doi.org/10.1007/s10658-022-02599-3

Rial-Otero R, Arias-Estévez M, López-Periago E, Cancho-Grande B, Simal-Gándara J (2005). Variation in concentrations of the fungicides tebuconazole and dichlofluanid following successive applications to greenhouse-grown lettuces. Journal of Agricultural and Food chemistry 53(11):4471-4475. https://doi.org/10.1021/jf047848h

Richards T, Leonard G, Soanes D, Talbot N (2011). Gene transfer into the fungi. Fungal Biology Reviews 25:98-110. http://dx.doi.org/10.1016/j.fbr.2011.04.003

Rossouw D, Meiring SP, Bauer FF (2018). Modifying Saccharomyces cerevisiae adhesion properties regulates yeast ecosystem dynamics. Msphere 3(5):e00383-18. https://doi.org/10.1128%2FmSphere.00383-18

Sagar NA, Khar A, Tarafdar A, Pareek S (2021). Physicochemical and thermal characteristics of onion skin from fifteen Indian cultivars for possible food applications. Journal of Food Quality 2021:1-11. https://doi.org/10.1155/2021/7178618

Saritha GNG, Anju T, Kumar A (2022). Nanotechnology-big impact: How nanotechnology is changing the future of agriculture? Journal of Agriculture and Food Research 100457. http://dx.doi.org/10.1016/j.jafr.2022.100457

Schwartz HF (2004). Botrytis, downy mildew, and purple blotch of onion. Colorado State University Cooperative Extension.

Schwartz HF, Mohan SK (2007). Compendium of onion and garlic diseases and pests. Compendium of onion and garlic diseases and pests. (Ed. 2).

Shelar A, Nile SH, Singh AV, Rothenstein D, Bill J, Xiao J, Chaskar M, Kai G, Patil R (2023). Recent advances in nano-enabled seed treatment strategies for sustainable agriculture: Challenges, risk assessment, and future perspectives. Nano-Micro Letters 15(1):54. https://doi.org/10.1007/s40820-023-01025-5

Singh A, Gautam PK, Verma A, Singh V, Shivapriya PM, Shivalkar S, Sahoo AK, Samanta SK (2020). Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnology Reports 25:e00427. https://doi.org/10.1016/j.btre.2020.e00427

Smith D, Onions AH (1994). The preservation and maintenance of living fungi. CAB international.

Sofy HL, Abd-El-Moneim M, Hassan M (2020). Effect of potassium salts on onion purple blotch incidence and some physiological and yield parameters in onion seed plants. Fayoum Journal of Agricultural Research and Development 34(2):158-168. https://dx.doi.org/10.21608/fjard.2020.189889

Suheri H, Price T (2000). Infection of onion leaves by Alternaria porri and Stemphylium vesicarium and disease development in controlled environments. Plant Pathology 49(3):375-382. https://doi.org/10.1046/j.1365-3059.2000.00458.x

Taylor NP, Cunniffe NJ (2023). Optimal resistance management for mixtures of high-risk fungicides: Robustness to the initial frequency of resistance and pathogen sexual reproduction. Phytopathology 113(1):55-69. https://doi.org/10.1094/phyto-02-22-0050-r

Tripathi N, Goshisht MK (2022). Recent advances and mechanistic insights into antibacterial activity, antibiofilm activity, and cytotoxicity of silver nanoparticles. ACS Applied Bio Materials 5(4):1391-1463. https://doi.org/10.1021/acsabm.2c00014

Tyagi S, Dube V, Charaya M (1990). Biological control of the purple blotch of onion caused by Alternaria porri (Ellis) ciferri. International Journal of Pest Management 36(4):384-386. https://doi.org/10.1080/09670879009371517

Verstrepen KJ, Klis FM (2006). Flocculation, adhesion and biofilm formation in yeasts. Molecular Microbiology 60(1):5-15. https://doi.org/10.1111/j.1365-2958.2006.05072.x

White TJ, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18(1):315-322.

Yadav RK, Singh A, Jain S, Dhatt AS (2017). Management of purple blotch complex of onion in Indian Punjab. International Journal of Applied Sciences and Biotechnology 5(4):454-465. http://dx.doi.org/10.3126/ijasbt.v5i4.18632

Younas M, Atiq M, Rajput NA, Abbas W, Rizwan Bashir M, Ahmad S, … Ahmad I (2021). Induction of resistance in onion against purple leaf blotch disease through chemicals. Asian Journal of Agriculture and Biology 3. http://dx.doi.org/10.35495/ajab.2021.01.039

Zapata-Sarmiento DH, Palacios-Pala EF, Rodríguez-Hernández AA, Melchor DLM, Rodriguez-Monroy M, Sepulveda-Jimenez G (2020). Trichoderma asperellum, a potential biological control agent of Stemphylium vesicarium, on onion (Allium cepa l.). Biological Control 140:104105. https://doi.org/10.1016/j.biocontrol.2019.104105

Zhang Y, Hui J, Qin Q, Sun Y, Zhang T, Sun H, Li M (2021). Transfer-learning-based approach for leaf chlorophyll content estimation of winter wheat from hyperspectral data. Remote Sensing of Environment 267:112724. http://dx.doi.org/10.1016/j.rse.2021.112724

Ziedan E, Farrag ES (2011). Application of yeasts as biocontrol agents for controlling foliar diseases on sugar beet plants. International Journal of Agricultural Technology 2011:1789-1799.

Downloads

Published

2024-05-14

How to Cite

AHMED, H. A., HASSAN, M. A., HUSSEIN, M. A., & AL-BEDAK, O. A. (2024). Efficiency of bio-agents and green-synthesized silver nanoparticles in controlling purple blotch disease caused by Alternaria porri in onion plants. Notulae Scientia Biologicae, 16(2), 11854. https://doi.org/10.55779/nsb16211854

Issue

Section

Research articles
CITATION
DOI: 10.55779/nsb16211854