Metabolite profiling of wild underutilized raspberry (Rubus pyrifolius)

Authors

  • Lily ISMAINI Research Center for Plant Conservation, Botanic Gardens and Forestry, National Research and Innovation Agency, Jl. Raya Jakarta, Bogor Km 46, Cibinong, Bogor 16911, West-Java (ID) https://orcid.org/0000-0002-0853-183X
  • Muhammad Iman SURYA Research Center for Plant Conservation, Botanic Gardens and Forestry, National Research and Innovation Agency, Jl. Raya Jakarta, Bogor Km 46, Cibinong, Bogor 16911, West-Java (ID) https://orcid.org/0000-0003-3900-7376

DOI:

https://doi.org/10.55779/nsb15411695

Keywords:

fatty acids, GC-MS, metabolite profiling, Rubus pyrifolius, terpenoids

Abstract

Rubus pyrifolius J.E. Smith, one of the Rubus species, has been found in Indonesia and collected in the Cibodas Botanical Garden. Rubus species are known for their diverse triterpenes, each with unique biological functions. This research aimed to analyse the metabolite profiles of R. pyrifolius using n-hexane and methanol solvents. GC-MS analysis was used to identify volatile and semi-volatile compounds in the R. pyrifolius extracts, with compound identification based on NIST 17 through GC/MS mass spectra analysis. The results showed that the total number of identified phytochemical compounds in methanol and n-hexane extracts of R. pyrifolius were 115 and 174, respectively. Methanol extracts from R. pyrifolius flower, young leaf, mature leaf, and young stem exhibited 46, 20, 15, and 34 compounds, respectively. In contrast, n-hexane extracts from R. pyrifolius flower, young leaf, mature leaf, and young stem contained 35, 47, 29, and 63 compounds, respectively. These compounds were classified into seven phytochemical groups: alkanes, alkenes, cyclic ethers, diterpenes, fatty acids, triterpenes, and vitamin E. Furthermore, only carboxylic esters, ergosterols, esters, fatty alcohols, and phenols were found in n-hexane extracts. The methanol extract showed seven significant phytochemical groups, including linolenic acid, phthalate esters, phytol, phytosterol, sterol lipids, terpenoids, and triterpenoids. R. pyrifolius possesses a variety of bioactive phytochemical profiles that are relevant in the field of phytopharmaceuticals. Nevertheless, further research is essential to determine their biological activity.

Metrics

Metrics Loading ...

References

Adu OT, Naidoo Y, Lin J, Adu TS, Sivaram V, Dewir YH, El-Banna AN (2022). Phytochemical screening and biological activities of Diospyros villosa (L.) De Winter leaf and stem-bark extracts. Horticulturae 8:945. https://doi.org/10.3390%2Fplants12040769

Aissaoui N, Mahjoubi M, Nas F, Mghirbi O, Arab M, Souissi Y, Hoceini A, Masmoudi AS., Mosbah A, Cherif A (2019). Antibacterial potential of 2, 4-di-tert-butylphenol and calixarene-based prodrugs from thermophilic Bacillus licheniformis isolated in Algerian hot spring. Geomicrobiology Journal 36:53-62. https://doi.org/10.1080/01490451.2018.1503377

Alara OR, Abdurahman NH, Ukaegbu CI (2021). Extraction of phenolic compounds: A review. Current Research in Food Science 4:200-214. https://doi.org/10.1016%2Fj.crfs.2021.03.011

Alghamdi AI, Ababutain IM (2019). Phytochemical screening and antibacterial activity of Eucalyptus camaldulensis’s leaves and bark extracts. Asian Journal Scientific Research 12(2):202-210. http://dx.doi.org/10.3923/ajsr.2019.202.210

Alice LA, Campbell CS (1999). Phylogeny of Rubus (rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. American Journal of Botany 1:81-97.

Balamurugan R, Duraipandiyan V, Ignacimuthu S (2011). Anti-diabetic activity of gamma-sitosterol isolated from Lippia nodiflora L. in streptozotocin induced diabetic rats. European Journal of Pharmacology 667:410-418. https://doi.org/10.1016/j.ejphar.2011.05.025

Balamurugan R, Stalin A, Ignacimuthu S (2012), Molecular docking of gamma-sitosterol with some targets related to diabetes. European Journal of Medicinal Chemistry 47(1):38-43. https://doi.org/10.1016/j.ejmech.2011.10.007

Bhuyan B, Dutta A (2021). A Review on the phytochemical, pharmacological and traditional profile on the Rubus genus in North Eastern and Western Parts of India. Current Trends in Pharmaceutical Research 8(1).

Birringer, M, Lington D, Vertuani S, Manfredini S, Scharlau D, Glei M, Ristow M (2010). Proapoptotic effects of long-chain vitamin E metabolites in HepG2 cells are mediated by oxidative stress. Free Radical Biology & Medicine 49:1315-1322. https://doi.org/10.1016/j.freeradbiomed.2010.07.024

Boussaada O, Ammar S, Saidana D, Chriaa J, Chraif I, Daami M, Helal AN, Mighri Z (2008). Chemical composition and antimicrobial activity of volatile components from capitula and aerial parts of Rhaponticum acaule DC growing wild in Tunisia. Microbiological Research 163:87-95. https://doi.org/10.1016/j.micres.2007.02.010

Bowen-Forbes CS, Zhang Y, Nair MG (2010). Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. Journal of Food Composition and Analysis 23(6):554-560. https://doi.org/10.1016/j.jfca.2009.08.012

Bravo K, Alzate F, Osorio E (2016). Fruits of selected wild and cultivated Andean plants as sources of potential compounds with antioxidant and anti-aging activity. Industrial Crops and Products 85:341-352. http://dx.doi.org/10.1016/j.indcrop.2015.12.074

Brigelius-Flohé R (2021). Vitamin E research: Past, now and future. Free Radical Biology and Medicine 177:381-390. https://doi.org/10.1016/j.freeradbiomed.2021.10.029

Carballeira NM, Cartagena M, Sanabria D, Tasdemir D, Prada CF, Reguera RM, Balaña-Fouce R (2012). 2-Alkynoic fatty acids inhibit topoisomerase IB from Leishmania donovani. Bioorganic & Medicinal Chemistry Letter 22(19):6185-9. https://doi.org/10.1016/j.bmcl.2012.08.019

Cerda B, Tomas-Barberan F.A, Espin JC (2005). Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries, walnuts, and oak-aged wine in humans: Identification of biomarkers and individual variability. Journal Agricultural and Food Chemistry 53:227-235. https://doi.org/10.1021/jf049144d

Chen Y, Dai G (2015). Acaricidal, repellent, and oviposition-deterrent activities of 2,4-ditert-butylphenol and ethyl oleate against the carmine spider mite Tetranychus cinnabarinus. Journal of Pest Science 88:645-655. https://doi.org/10.1007/s10340-015-0646-2

Cheplick S, Kwon Y, Bhowmik P, Shetty K (2007). Clonal variation in raspberry fruit phenolics and relevance for diabetes and hypertension management. Journal of Food Biochemistry 31:656-679. https://doi.org/10.1111/j.1745-4514.2007.00136.x

Choi SJ, Kim JK, Kim HK, Harris K, Kim CJ, Park GG, Park CS, Shin DH (2013). 2,4-Di-tert-butylphenol from sweet potato protects against oxidative stress in PC12 cells and in mice. Journal of Medicinal Food 16:977-983. https://doi.org/10.1089/jmf.2012.2739

Cooney RV, Franke AA, Harwood PJ, Hatch-Pigott V, Custer LJ, Mordan LJ (1993). Gamma-tocopherol detoxification of nitrogen dioxide: superiority to alpha-tocopherol. Proceedings of the National Academy of Sciences of the United States of America 90(5):1771-5. https://doi.org/10.1073%2Fpnas.90.5.1771

Das M, Himaja M (2014). Phytochemical screening, GC-MS analysis and biological activities of Ipomoea eriocarpa leaf extracts. International Journal of Pharmacy and Pharmaceutical Sciences 6(4):592-594.

Desmiaty Y, Hanafi M, Saputri FC, Elya B, Rifai EA, Syahdi RR (2012). Two triterpenoids from Rubus fraxinifolius leaves and their tyrosinase and elastase inhibitory activities. Science Report 11:20452. https://doi.org/10.1038/s41598-021-99970-x

Duke’s (2013). Phytochemical and ethnobotanical databases. Retrieved 2023 Agust 25 from: https://phytochem.nal.usda.gov

Feng S, Gan L, Yang CS, Liu AB, Lu W, Shao P, Dai Z, Sun P, Luo Z (2018). Effects of stigmasterol and β-sitosterol on nonalcoholic fatty liver disease in a mouse model: a lipidomic analysis. Journal of Agricultural and Food Chemistry 66(13):3417-3425. https://doi.org/10.1021/acs.jafc.7b06146

Focke, WO (1910). Species Ruborum. Bibliotheca botanica E. Schweizerbartsche Verlagsbuchhandlung, Stuttgart.

Hana, PN, Nurchayati Y, Budihastuti R (2020). Efek naungan dan umur tanaman terhadap pertumbuhan dan profil metabolit bunga krisan (Chrysanthemum sp.) [Effect of shade and age of plants on growth and profile of Chrysanthemum metabolites. Buletin Anatomi dan Fisiologi 5(1):8-17.

Heinrich M (2008). Ethnopharmacy and natural product research—Multidisciplinary opportunities for research in the metabolomic age. Phytochemistry Letters 1:1-5. https://doi.org/10.1016/j.phytol.2007.11.003

Hummer KE (2010). Rubus pharmacology: Antiquity to the present. HortScience 45(11):1587-1591. https://doi.org/10.21273/HORTSCI.45.11.1587

Joshi N, Sah GC, Mishra D (2013). GC-MS analysis and antimicrobial activity of essential oil of Senecio pedunculatus. IOSR Journal of Applied Chemistry 6:49-51.

Kalkman C (1993). Rosaceae. Flora Malesiana-Series 1 Spermatophyta 11(2):227-351. National Herbarium of the Netherlands.

Kanegusuku M, Sbors D, Bastos ES, de Souza MM, Cechinel-Filho V, Yunes RA, Delle Monache F, Niero R (2007). Phytochemical and analgesic activity of extract, fractions and a 19-hydroxyursane-type triterpenoid obtained from Rubus rosaefolius (Rosaceae). Biological & Pharmaceutical Bulletin 30(5):999-1002. https://doi.org/10.1248/bpb.30.999

Khan K, Firdous S, Ahmad A, Fayyaz N, Nadir M, Rasheed M, Faizi S (2016). GC-MS profile of antimicrobial and antioxidant fractions from Cordia rothii roots, Pharmaceutical Biology 54(11):2597-2605. https://doi.org/10.3109/13880209.2016.1172320

Kim DY, Choi BY (2019). Costunolide—A bioactive sesquiterpene lactone with diverse therapeutic potential. International Journal of Molecular Sciences 20(12):2926. https://doi.org/10.3390/ijms20122926

Kim SJ, Chung WS, Kim SS, Ko SG, Um JY (2011). Anti- inflammatory effect of Oldenlandia diffusa and its constituent, hentriacontane, through suppression of caspase‐1 activation in mouse peritoneal macrophages. Phytotherapy Research 25(10):1537-1546. https://doi.org/10.1002/ptr.3443

Kim SK, Karadeniz F (2012). Biological importance and applications of squalene and squalane. Advance Food and Nutrition Research 65:223-233. https://doi.org/10.1016/b978-0-12-416003-3.00014-7

Kumar KJS, Lin C, Tseng YH, Wang SY (2021). Fruits of Rosa laevigata and its bio-active principal sitostenone facilitate glucose uptake and insulin sensitivity in hepatic cells via AMPK/ PPAR-γ activation. Phytomedicine Plus 1:100109. https://doi.org/10.1016/j.phyplu.2021.100109

Leila A, Lamjed B, Roudaina B, Najla T, Taamalli A, Jellouli S, Mokhtar Z (2019). Isolation of an antiviral compound from Tunisian olive twig cultivars. Microbial Pathogenesis. 128:245-249. https://doi.org/10.1016/j.micpath.2019.01.012

Li BZ, Wang BG, Jia ZJ (1998). Pentacyclic triterpenoids from Rubus xanthocarpus. Phytochemistry 49(8):2477-2481. https://doi.org/10.1016/S0031-9422(98)00161-7

Loizou S, Lekakis I, Chrousos GP, Moutsatsou P (2010). Beta-sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Molecular Nutrition& Food Research 54:551-558. https://doi.org/10.1002/mnfr.200900012

Lozano-Grande MA, Gorinstein S, Espitia-Rangel E, Dávila-Ortiz G, Martínez-Ayala AL (2018), Plant sources, extraction methods, and uses of squalene. International Journal of Agronomy 2018:13. https://doi.org/10.1155/2018/1829160

Lulamba TE, Green E, Serepa-Dlamini MH (2021). Photorhabdus sp. ETL antimicrobial properties and characterization of its secondary metabolites by Gas Chromatography–Mass Spectrometry. Life 11:787. https://doi.org/10.3390/life11080787

Manilal A, Sujith S, Sabarathnam B, Kiran GS, Selvin J, Shakir C, et al (2011). Biological activity of the red alga Laurencia brandenii. Acta Botanica Croatica: 70:81-90. https://doi.org/10.2478/v10184-010-0001-x

Marín RM, de Oca Porto RM, Paredes MEH, Alarcón AB, Balmaseda IH, del Valle RM, Paz Lopes MT, Guerra IR (2018). GC/MS Analysis and bioactive properties of extracts obtained from Clusia minor L. Leaves. Journal of Mexican Chemical Society 62(4). https://doi.org/10.29356/jmcs.v62i4.544

Mathi P, Das S, Nikhil K, Roy P, Yerra S, Ravada SR, Bokka VR, Botlagunta M (2015). Isolation and characterization of the anticancer compound piceatannol from Sophora Interrupta Bedd. International Journal of Preventive Medicine 6:101. https://doi.org/10.4103%2F2008-7802.167181

McDougall GJ, Ross HA, Ikeji M, Stewart D (2008). Berry extracts exert different antiproliferative effects against cervical and colon cancer cells grown in vitro. Journal of Agricultural and Food Chemistry 56(9):3016-3023. https://doi.org/10.1021/jf073469n

Mei QX, Chen XL, Xia X, Fang ZJ, Zhou HB,Gao, YQ, Dai WB, Jiang RW (2016). Isolation and chemotaxonomic significance of chemical constituents from Rubus parvifolius. Chinese Herbal Medicine 8(1):75-79. https://doi.org/10.1016/S1674-6384(16)60011-4

Mohammed GJ, Al-Jassani MJ, Hameed IH (2016). Anti-bacterial, antifungal activity and chemical analysis of Punica grantanum (pomegranate peel) using GC-MS and FTIR spectroscopy. International Journal of Pharmacognosy and Phytochemical Research 8(3):480-494.

Narender PD, Rao BG, Rao ES, Rao TM, Praneeth VS (2012). Quantification of phytochemical constituents and in vitro antioxidant activity of Mesua Ferea leaves. Asian Pacific Journal of Tropical Biomedicine 2:539-542. http://dx.doi.org/10.1016/S2221-1691(12)60269-X

Ogunlesi M, Okiei W, Ofor E, Osibote AE (2009). Analysis of the essential oil from the dried leaves of Euphorbia hirta Linn (Euphorbiaceae), a potential medication for asthma. African Journal Biotechnology 8:7042-7050. http://www.academicjournals.org/AJB

Ono M, Yasuda S, Nishi K, Yamamoto K, Fuchizaki S, Higuchi S, Komatsu H, Okawa M, Kinjo J, Yoshimitsu H, Nohara T (2016). Two new triterpenoids from the seeds of blackberry (Rubus fructicosus). Natural Product. Research 30(8):904-911. https://doi.org/10.1080/14786419.2015.1076820

Paudel MR, Chand MB, Pant B, Pant B (2019). Assessment of antioxidant and cytotoxic activities of extracts of Dendrobium crepidatum. Biomolecules 9(9):478. http://dx.doi.org/10.3390/biom9090478

Petreanu M, Ferreira EK, Sagaz AP, Vendramini-Costa DB, Ruiz AL, De Carvalho JE, Campos A, Cechinel Filho V, Delle Monache F, Niero R (2015). Uncommon trimethoxylated flavonol obtained from Rubus rosaefolius leaves and its antiproliferative activity. Evidence-Based Complementary Alternative Medicine 2015:341216. https://doi.org/10.1155/2015/341216

Pinto MEA, Araújo SG, Morais MI, Sá NP, Lima CM, Rosa CA, Siqueira EP, Johann S, Lima LARS (2017). Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. Anais da Academia Brasileira de Ciências 89:1671-1681. https://doi.org/10.1590/0001-3765201720160908

Plant Resources of South-East Asia No 2: Edible fruits and nuts. Rubus L. PROSEA Foundation, Bogor, Indonesia. https://prosea.prota4u.org/view.aspx?id=8

Ponnamma and Manjunath 2012 Ponnamma SU, Manjunath K (2012). GC-MS analysis of phytocomponents in the methanolic extract of Justicia wynaadensis (Nees) T. anders. International Journal of Pharma and Bio Sciences 3(3):570-576.

Rahman S, Ul Haq F, Ali A, Khan MN, Shah SMZ, Adhikhari A, El-Seedi HR, Musharraf SG (2019). Combining untargeted and targeted metabolomics approaches for the standardization of polyherbal formulations through UPLC-MS/MS Combining untargeted and targeted metabolomics approaches for the standardization of polyherbal formulations through UPLC–MS/MS. Metabolomics 15:116. https://doi.org/10.1007/s11306-019-1582-6

Reiter E, Jiang Q, Christen S. Anti-inflammatory properties of alpha- and gamma-tocopherol. Molecular Aspects of Medicine 28(5-6):668-691. https://doi.org/10.1016%2Fj.mam.2007.01.003

Rocabado GO, Bedoya LM, Abad MJ, Bermejo P (2008). Rubus - A Review of its phytochemical and pharmacological Profile. Natural Product Communications 3(3):423-436. https://doi.org/10.1177/1934578X0800300319

Rosa D, Elya B, Hanafi M, Khatib A, Surya MI (2023). In vitro and in silico screening analysis of Artobotrys sumatranus leaf and twig extracts for α-glucosidase inhibition activity and its relationship with antioxidant activity. Scientia Pharmaceutica 91(2):1-19. https://doi.org/10.3390/scipharm91010002

Ross HA, McDougall GJ, Stewart D (2007). Antiproliferative activity is predominantly associated with ellagitannins in raspberry extracts. Phytochemistry 68(2):218-228. https://doi.org/10.1016/j.phytochem.2006.10.014

Sahar WMH, Aida HS (2018). GC/MS identification and applications of bioactive seaweed extracts from Mediterranean coast of Egypt. The Egyptian Journal of Aquatic Biology and Fisheries 22(5):1-21 http://dx.doi.org/10.21608/ejabf.2018.17952

Sahi NM (2016). Evaluation of insecticidal activity of bioactive compounds from Eucalyptus citriodora against Tribolium castaneum. International Journal of Pharmacognosy and Phytochemical Research 8(8):1256-1270.

Sang MK, Kim KD (2012). The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. Journal of Applied Microbiology 113:383-398. https://doi.org/10.1111/j.1365-2672.2012.05330.x

Schubert M, Kluge S, Schmölz L, Wallert M, Galli F, Birringer M, Lorkowski S (2018). Long-chain metabolites of vitamin E: Metabolic activation as a general concept for lipid-soluble vitamins? Antioxidants 7:10. http://dx.doi.org/10.3390/antiox7010010

Seeram NP, Lee R, Scheuller HS, Heber D (2006). Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chemistry 97:1-11. https://doi.org/10.1016/j.foodchem.2005.02.047

Senthil J, Rameashkannan MV, Mani P, Jayaseelan T, Dinesh KG (2016). Antidiabetic activities of Ipomoea sepiaria (Koenig Ex. Roxb) ethanolic leaves extracts in streptozotocin induced diabetic rats. International Journal of Chemistry and Pharmaceutical Science 4(5):247-250.

Shaaban MT, Ghaly MF, Fahmi SM (2021). Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. Journal of Basic Microbiology 61(6):557-568. https://doi.org/10.1002/jobm.202100061

Sharma RK, Goel A (2018). Identification of phytoconstituents in Lawsonia inermis Linn. leaves extract by GC-MS and their antibacterial potential. Pharmacognasy Journal 10(6):1101-1108. https://doi.org/10.5530/pj.2018.6.187

Smillie TJ, Khan IA (2010). Comprehensive approach to identifying and authenticating botanical products. Clinical Pharmacology and Therapeutics 87:175-186. https://doi.org/10.1038/clpt.2009.287

Sowmiya R, Balasubramani G, Deepak P, Aiswarya D, Ravikumar S, Prasannakumar S, Perumal P (2017). Characterization and screening of in vitro antimalarial and larvicidal activities of selected seaweeds from southeast coast of India against Plasmodium falciparum and Anopheles stephensi. Journal of Coastal Life Medicine 5(6):242-248. https://doi.org/10.12980/jclm.5.2017J7-35

Sunita A, Manju S (2017). Phytochemical examination and GC-MS analysis of methanol and ethyl acetate extract of root and stem of Gisekia phamaceoides Linn. (Molluginaceae) from Thar desert, Rajasthan, India. Research Journal of Pharmaceutical, Biological and Chemical Sciences 8(4):168-174.

Suresh A, Praveenkumar R, Thangaraj R, Oscar FL, Baldev E, Dhanasekaran D, Thajuddin N (2014). Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Disease 4(S2):S979-S984. https://doi.org/10.1016/S2222-1808(14)60769-6

Surya MI, Suhartati S, Ismaini L, Lusini D, Anggraeni S, Normasiwi N, Asni and Sidiq MAB (2018). Fruits nutrients content of five species of wild raspberries (Rubus spp.) from Indonesian Mountain’s Forest. Journal Tropical of Life Sciences 8(1):75-80. https://doi.org/10.11594/jtls.08.01.13

Swamy MK, Arumugam G, Kaur R, Ghasemzadeh A, Yusoff MM, Sinniah UR. (2017). GC-MS based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian Plectranthus amboinicus leaves. Evidence-Based Complementary Alternative Medicine 1517683. https://doi.org/10.1155/2017/1517683

Takahashi C, Kikuchi N, Katou N, Miki T, Yanagida F, Umeda M (1995). Possible anti-tumor-promoting activity of components in Japanese soybean fermented food, natto: Effect on gap junctional intercellular communication. Carcinogenesis 16(3):471-476. https://doi.org/10.1093/carcin/16.3.471

Takahashi S, Takeshita K, Seeni A, Sugiura S, Tang M, Sato SY, Kuriyama H, Nakadate M, Abe K, Maeno Y, Nagao M, Shirai T (2009). Suppression of prostate cancer in a transgenic rat model via gamma-tocopherol activation of caspase signaling. Prostate 69(6):644-651. https://doi.org/10.1002/pros.20915

Tayade AB, Dhar P, Kumar J, Sharma M, Chauhan RS, Chaurasia OP, Srivastava RB (2013). Chemometric profile of root extracts of Rhodiola imbricata Edgew. with hyphenated gas chromatography mass spectrometric technique. PLoS One 8(1):e52797. https://doi.org/10.1371/journal.pone.0052797

Uddin SJ, Grice D, Tiralongo E (2012). Evaluationof cytotoxic activity of patriscabratine, tetracosane and various flavonoids isolated from the Bangladeshi medicinal plant Acrostichum aureum. Pharmaceutical Biology 50:1276-1280. https://doi.org/10.3109/13880209.2012.673628

Udobre AS, Etim EI, Udobang JA, Udoh (2015). Antimicrobial activity of stigmast-4-en-3-one and 2,4-Dimethylhexane isolated from Nauclea latifolia. International Journal of Phytopharmacy Research 6(2):65-68.

Uma B, Prabhakar K, Rajendran S (2009). Invitro antimicrobial activity and phytochemical analysis of Ficus religiosa L. and Ficus bengalensis L. against diarrhoeal enterotoxigenic E. coli. Ethnobotanical Leaflets 2009:4. https://opensiuc.lib.siu.edu/ebl/vol2009/iss4/7

Vanitha V, Vijayakumar S, Nilavukkarasi M, Punitha VN, Vidhya E, Praseetha PK (2020). Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Industrial Crops and Products 154:112748. https://doi.org/10.1016/j.indcrop.2020.112748

Wedge DE, Meepagala KM, Magee JB, Smith SH, Huang G, Larcom LL (2001). Anticarcinogenic activity of strawberry, blueberry, and raspberry extracts to breast and cervical cancer cells. Journal of Medicinal Food 4(1):49-51. https://doi.org/10.1089/10966200152053703

Wei LS, Wee W, Siong JYF, Syamsumir DF (2011). Characterization of antimicrobial, antioxidant, anticancer properties and chemical composition of Malaysian Andrographis paniculata leaf extract. Pharmacology Online 2:996-1002.

Wilson MK, Baguley BC, Wall C, Jameson MB, Findlay MP (2014). Review of high-dose intravenous vitamin C as an anticancer agent. Asia Pacific Journal of Clinical Oncology 10(1):22-37. https://doi.org/10.1111/ajco.12173

Yoon MA, Jeong TS, Park DS, Xu MZ, Oh HW, Song KB, Lee WS, Park HY (2006). Antioxidant effects of quinoline alkaloids and 2,4-di-tert-butylphenol isolated from Scolopendra subspinipes. Biological Pharmaceutical Bulletin 29:735-739. https://doi.org/10.1248/bpb.29.735

Yu G, Luo Z, Wang W, Li Y, Zhou Y, Shi Y. (2019). Rubus chingii Hu: A Review of the phytochemistry and pharmacology. Frontiers in Pharmacology 16(10):799. https://doi.org/10.3389%2Ffphar.2019.00799

Zayed MZ, Wu A, Sallam SM (2019). Comparative phytochemical constituents of Leucaena leucocephala (Lam.) leaves, fruits, stem barks, and wood branches grown in Egypt using GC-MS method coupled with multivari- ate statistical approaches. BioResource 14(1):996-1013.

Zeng HJ, Liu Z, Wang YP, Yang D, Yang R, Qu LB (2018). Studies on the anti-aging activity of a glycoprotein isolated from Fupenzi (Rubus chingii Hu.) and its regulation on klotho gene expression in mice kidney. International Journal of Biological Macromolecules 119:470-476. https://doi.org/10.1016/j.ijbiomac.2018.07.157

Zhang H, Zhang L, Peng LJ, Dong XW, Wu D, Wu VC, Feng FQ (2012). Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus. Journal of Zhejiang University Science B13(2):83-93. https://doi.org/10.1631%2Fjzus.B1100049

Published

2023-12-02

How to Cite

ISMAINI, L., & SURYA, M. I. (2023). Metabolite profiling of wild underutilized raspberry (Rubus pyrifolius). Notulae Scientia Biologicae, 15(4), 11695. https://doi.org/10.55779/nsb15411695

Issue

Section

Research articles
CITATION
DOI: 10.55779/nsb15411695