Effects of pre-harvest chitosan application on growth parameters and total phenolic - antioxidant contents of bitter gourd (Momordica charantia L.)


  • Tugce OZSAN KILIC Akdeniz University, Faculty of Agriculture, Department of Horticulture, Dumlupınar Bulvarı, 07070 Antalya (TR)
  • Ahmet Naci ONUS Akdeniz University, Faculty of Agriculture, Department of Horticulture, Dumlupınar Bulvarı, 07070 Antalya (TR)




agrochemical, bitter melon, elicitors, foliar spray, health properties, natural products


Bitter gourd (Momordica charantia L.) plant is cultivated for both culinary and medicinal purposes in the world due to its valuable benefits for health-promoting properties. The current study aimed to reveal the effects of chitosan applied at three different concentrations (50 ppm, 100 ppm, and 150 ppm) in three different treatments with 21 days intervals on growth parameters and total phenolic and antioxidant contents of bitter gourd. The findings of the study demonstrated that the foliar treatment with 100 ppm chitosan at the second and third treatments had positive effects on the majority of growth parameters examined and on increasing total phenol and antioxidants in bitter gourd. As a result, chitosan could be a possible substance to be used to enhance bitter gourd plants’ growth and development as well as in several industrial fields such as pharmaceuticals and agriculture.


Metrics Loading ...


Abdel-Mawgoud AMR, Tantawy AS, El-Nemr MA, Sassine YN (2010). Growth and yield responses of strawberry plants to chitosan application. European Journal of Scientific Research 39(1):161-168.

Bora AFM, Eric-Parfait Kouame KJ, Li X, Liu L, Pan Y (2023). New insights into the bioactive polysaccharides, proteins, and triterpenoids isolated from bitter melon (Momordica charantia) and their relevance for nutraceutical and food application: A review. International Journal of Biological Macromolecules 231:123-173. https://doi.org/10.1016/j.ijbiomac.2023.123173

Braca A, Siciliano T, D’Arrigo M, Germanò MP (2008). Chemical composition and antimicrobial activity of Momordica charantia seed essential oil. Fitoterapia 79(2):123-5. https://doi.org/10.1016/j.fitote.2007.11.002

Cai Z, Kastell A, Mewis I, Knorr D, Smetanska I (2012). Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of Vitis vinifera. Plant Cell Tissue Organ Culture 108:401-409. https://doi.org/10.1007/s11240-011-0051-3

Chakraborty M, Hasanuzzaman M, Rahman M, Khan MAR, Bhowmik P, Mahmud NU, Tanveer M, Islam T (2020). Mechanism of Plant Growth Promotion and Disease Suppression by Chitosan Biopolymer. Agriculture 10:624. https://doi:10.3390/agriculture10120624

Chen HP, Xu LL (2005). Isolation and characterization of a novel chitosan-binding protein from non-heading Chinese cabbage leaves. Journal of Integrative Plant Biology 47:452-456.

Chong YM, Chang SK, Sia WCM, Yim HS (2015). Antioxidant efficacy of mangosteen (Garcinia mangostana Linn.) peel extracts in sunflower oil during accelerated storage. Food Bioscience 12:18-25. https://doi.org/10.1016/j.fbio.2015.07.002

Dzung NA, Khanh VTP, Dzung TT (2011). Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydrate Polymers 84:751-755. https://doi.org/10.1016/j.carbpol.2010.07.066

Fernández-León MF, Fernández-León AM, Lozano M, Ayuso MC, Amodio ML, Colelli G, González-Gómez D (2013). Retention of quality and functional values of broccoli ‘Parthenon’ stored in modified atmosphere packaging. Food Control 31:302-313. https://doi.org/10.1016/j.foodcont.2012.10.012

Ghasemi Pirbalouti A, Malekpoor F, Salimi A, Golparvar A (2017). Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Scientia Horticulturae 217:114-122. https://doi.org/10.1016/j.scienta.2017.01.031

Ghasemi Pirbalouti AG, Samani MR, Hashemi M, Zeinali H (2014). Salicylic acid affects growth, essential oil and chemical compositions of thyme (Thymus daenensis Celak.) under reduced irrigation. Plant Growth Regulation 72:289-301. https://doi.org/10.1007/s10725-013-9860-1

Ghasemnezhad M, Shiri MA, Sanavi M (2010). Effect of chitosan coatings on some quality indices of apricot (Prunus armeniaca L.) during cold storage. Caspian Journal of Environmental Sciences 8:25-33.

Grover J, Yadav S (2004). Pharmacological actions and potential uses of Momordica charantia: A review. Journal of Ethnopharmacology 93(1):123-132. https://doi.org/10.1016/j.jep.2004.03.035

Gόrnik K, Grzesik M, Romanowska-Duda B (2008). The effect of chitosan on rooting of grapevine cuttings and on subsequent plant growth under drought and temperature stress. Journal of Fruit and Ornamental Plant Research 16:333-343.

Hawrylak-Nowak B, Dresler S, Rubinowska K, Matraszek-Gawron R (2021). Eliciting effect of foliar application of chitosan lactate on the phytochemical properties of Ocimum basilicum L. and Melissa officinalis L. Food Chemistry 342:128358. https://doi.org/10.1016/j.foodchem.2020.128358

He Y, Bose SK, Wang W, Jia X, Lu H, Yin H (2018). Pre-harvest treatment of chitosan oligosaccharides improved strawberry fruit quality. International Journal of Molecular Sciences 19:2194. https://doi.org/10.3390/ijms19082194

Khan WM, Prithiviraj B, Smiyh DL (2002). Effect of foliar application of chitin oligosaccharides on photosynthesis of maize and soybean. Photosynthetica 40:621-624. https://doi.org/10.1023/A:1024320606812

Kim HJ, Chen F, Wang X, Rajapakse NC (2005). Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry 53:3696-3701. https://doi.org/10.1021/jf0480804

Kulkarni P, Lohidasan S, Mahadik K (2021). Isolation, characterisation and investigation of in vitro antidiabetic and antioxidant activity of phytoconstituents from fruit of Momordica charantia Linn. Natural Product Researches 35:1035–1037. https://doi.org/10.1080/14786419.2019.1613400

Lee SJ, Umano K, Hibamoto ST, Lee KG (2005). Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chemistry 91:131-137. https://doi.org/10.1016/j.foodchem.2004.05.056

Lee YS, Kim YH, Kim SB (2005). Changes in the respiration, growth, and vitamin C content of soybean sprouts in response to chitosan of different molecular weights. HortScience 40:1333-1335. https://doi.org/10.21273/HORTSCI.40.5.1333

Luan LQ, Ha VTT, Nagasawa N, Kume T, Yoshii F, Nakanishi TM (2005) Biological effect of irradiated chitosan on plants in vitro. Biotechnology and Applied Biochemistry 41(1):49-57.

Maluin FN, Hussein MZ (2020). Chitosan-based agronanochemicals as a sustainable alternative in crop protection. Molecules 25:1611. https://doi.org/10.3390/molecules25071611

Mehregan M, Mehrafarin A, Labbafi MR, Naghdi Badi HA (2017). Effect of different concentrations of chitosan biostimulant on biochemical and morphophysiological traits of stevia plant (Stevia rebaudiana Bertoni). Journal of Medicinal Plants 16:169-181.

Mirheidari F, Hatami M, Ghorbanpour M (2022). Effect of different concentrations of IAA, GA3 and chitosan nano-fiber on physio-morphological characteristics and metabolite contents in roselle (Hibiscus sabdariffa L.). South African Journal of Botany 145:323-333. https://doi.org/10.1016/j.sajb.2021.07.021

Mondal MMA, Malek MA, Puteh AB, Ismail MR, Ashrafuzzaman M, Naher L (2012). Effect of foliar application of chitosan on growth and yield in okra. Australian Journal of Crop Science 6(5):918-921.

Nahar SJ, Shimasaki K, Haque SM (2012). Effect of different light and two polysaccharides on the proliferation of protocorm-like bodies of Cymbidium cultured in vitro. Acta Horticulturae 956:307-313. https://doi.org/10.17660/ActaHortic.2012.956.35

Nguyen Van S, Dinh Minh H, Nguyen Anh D (2013). Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatalysis and Agricultural Biotechnology 2(4):289-294. https://doi.org/10.1016/j.bcab.2013.06.001

Pereira JA, Oliveira I, Sousa A, Valentão P, Andrade PB, Ferreira ICFR, Estevinho L (2007). Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food and Chemical Toxicology 45(11):2287-2295. https://doi.org/10.1016/j.fct.2007.06.004

Pérez-Balibrea S, Moreno DA, García-Viguera C (2011). Improving the phytochemical composition of broccoli sprouts by elicitation. Food Chemistry 129:35-44. https://doi.org/10.1016/j.foodchem.2011.03.049

Salachna P, Zawadzińska A (2014). Effect of chitosan on plant growth, flowering and corms yield of potted freesia. Journal of Ecological Engineering 15(3):97-102. https://doi.org/10.12911/22998993.1110223

Salimgandomi S, Shabrangy A. (2016). The effect of chitosan on antioxidant activity and some secondary metabolites of Mentha piperita L. Journal of Pharmaceutical and Health Sciences 4(2):135-142.

Škerget M, Kotnik P, Hadolin M, Hraš AR, Simonič M, Knez Z (2005). Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry 89:191-198. https://doi.org/10.1016/j.foodchem.2004.02.025

Tantasawat P, Wannajindaporn A, Chantawaree C, Wangpunga C, Poomsom K, Sorntip A (2010). Chitosan stimulates growth of micropropagated Dendrobium plantlets. Acta Horticulturae 878:205-212. https://doi.org/10.17660/ActaHortic.2010.878.24

Tanwar S, Dhakad P, Dhingra G, Tanwar K (2022). A review on salient pharmacological features and chemical constituents of Bitter Melon. Biological Sciences 02(02):229-239. https://doi.org/10.55006/biolsciences.2022.2207

Uthairatanakij A, Teixeira JA, Obsuwan K (2007). Chitosan for improving orchid production and quality. Orchid Science and Biotechnology 1:1-5.

Viacava GE, Goyeneche R, Goñi MG, Roura SI, Agüero MV (2018). Natural elicitors as preharvest treatments to improve postharvest quality of Butterhead lettuce. Scientia Horticulturae 228:145-152. https://doi.org/10.1016/j.scienta.2017.10.018

Vosoughi N, Gomarian M, Pirbalouti AG, Khaghani S, Malekpoor F (2018). Essential oil composition and total phenolic, flavonoid contents, and antioxidant activity of sage (Salvia officinalis L.) extract under chitosan application and irrigation frequencies. Industrial Crops and Products 117:366-374. https://doi.org/10.1016/j.indcrop.2018.03.021

Wang C, Lu J, Zhang S, Wang P, Hou J, Qian J (2011). Effects of Pb stress on nutrient uptake and secondary metabolism in submerged macrophyte Vallisneria natans. Ecotoxicology and Environmental Safety 74(5):1297-1303. https://doi.org/10.1016/j.ecoenv.2011.03.005

Wanichpongpan P, Suriyachan K, Chandrkrachang S. (2000). Effects of chitosan on the growth of Gerbera flower plant (Gerbera jamesonii). In: Uragami T, Kurita K, Fukamizo T (Eds). Chitin and Chitosan in Life Science. Proceedings of the Eighth International Chitin and Chitosan Conference and Fourth Asia Pacific Chitin and Chitosan Symposium, Yamaguchi, Japan, 21-23 September 2000; Kodansha Scientific: Tokyo, Japan, pp 198-201.



How to Cite

OZSAN KILIC, T., & ONUS, A. N. (2023). Effects of pre-harvest chitosan application on growth parameters and total phenolic - antioxidant contents of bitter gourd (Momordica charantia L.). Notulae Scientia Biologicae, 15(3), 11652. https://doi.org/10.55779/nsb15311652



Research articles
DOI: 10.55779/nsb15311652