Environmental stress tolerance, hydro-distilled essential oils characteristics and biological activities of Eucalyptus torquata Luehm.


  • Sonia Ben RABEH University of Gabes, Faculty of Science Gabes, Gabes; University of Gabes, National Engineering School of Gabes, Laboratory of Energy, Water, Environment and Processes, Gabes (TN)
  • Kaouther Ben YAHIA University of Carthage, I National Institute for Rural Engineering, Water and Forestry (INRGREF), LEF (TN)
  • Samir DHAHRI University of Carthage, National Institute for Rural Engineering, Water and Forestry (INRGREF), LGVRF (TN)
  • Souda BELAÏD University of Gabes, Faculty of Science Gabes, Gabes; University of Gabes, National Engineering School of Gabes, Laboratory of Energy, Water, Environment and Processes, Gabes (TN)
  • Imen CHEMLALI University of Gabes, Faculty of Science Gabes, Gabes; University of Gabes, National Engineering School of Gabes, Laboratory of Energy, Water, Environment and Processes, Gabes (TN)
  • Chokri Ben ROMDHANE University of Carthage, National Institute for Rural Engineering, Water and Forestry (INRGREF), LGVRF (TN)
  • Mehrez ROMDHANE University of Gabes, National Engineering School of Gabes, Laboratory of Energy, Water, Environment and Processes, Gabes (TN)
  • Ezzeddine SAADAOUI University of Carthage, National Institute for Rural Engineering, Water and Forestry (INRGREF), LGVRF (TN)




biological activities, chemical composition, coral gum, essential oil, Eucalyptus


Eucalyptus has become one of the most widely planted genera in the world because of its tolerance to a wide range of soil types and climates, as well as for its many industrial, commercial and medicinal uses. Eucalyptus torquata Luehm. is a plantation species frequently planted in semi-arid and arid regions for its ecological, forestry, ornamental and melliferous interests. Based on literature, drought tolerance of this species was mostly directed to adaptation mechanisms. Physiological investigations reveal the importance of stomatal closure and increased solute contents suggesting that osmotic adjustment is one of the main responses to drought in E. torquata. On the other hand, it showed low sensitivity to salt stress. This paper also highlights the immense benefits of E. torquata which contains essential oils with variable chemical composition and rich essentially in 1,8-cineole, torquatone, α-pinene, trans-myrtanol, α-eudesmol, β-eudesmol, globulol, trans-pinocarveol and aromadendrene. These oils, as well as the methanol and aqueous extracts possess a wide variety of bioactivities of great importance which are particularly valuable as antibacterial and antifungal agents also have a strong toxicity against insects and mites in addition to antiproliferative and cytotoxic effects against different types of cancer cells.


Metrics Loading ...


Abdelkhalek A, Salem MZM, Kordy AM, Salem AZM, Behiry SI (2020). Antiviral, antifungal, and insecticidal activities of Eucalyptus bark extract: HPLC analysis of polyphenolic compounds. Microbial Pathogenesis 147:104383. https://doi.org/10.1016/j.micpath.2020.104383

Abiri R, Atabaki N, Sanusi R, Malik S, Abiri R, Safa P, … Abdul-Hamid H (2021). New insights into the biological properties of Eucalyptus-Derived essential oil: A promising green anti-cancer drug. Food Reviews International 1-36. https://doi.org/10.1080/87559129.2021.1877300

Adak T, Barik N, Patil NB, Govindharaj GPP, Gadratagi BG, Annamalai M, … Rath PC (2020). Nanoemulsion of Eucalyptus oil: An alternative to synthetic pesticides against two major storage insects Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) of rice. Industrial Crops and Products 143:111849. https://doi.org/10.1016/j.indcrop.2019.111849

Al-Qaysi AMK, Al-Ouqaili MTS, Al-Meani SAL (2020). Ciprofloxacin-and gentamicin-mediated inhibition of Pseudomonas aeruginosa biofilms is enhanced when combined the volatile oil from Eucalyptus camaldulensis. Systematic Reviews in Pharmacy 11:98-105. https://doi.org/10.31838/srp.2020.7.16

Al-Snafi PDAE (2017). The pharmacological and therapeutic importance of Eucalyptus species grown in Iraq. IOSR Journal of Pharmacy 7(3):72-91. https://doi.org/10.9790/3013-0703017291

Aleksic Sabo V, Knezevic P (2019). Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Industrial Crops and Products 132:413-29. https://doi.org/10.1016/j.indcrop.2019.02.051

Almas I, Innocent E, Machumi F, Kisinza W (2018). Effect of geographical location on yield and chemical composition of essential oils from three Eucalyptus species growing in Tanzania. Asian Journal of Traditional Medicines 14(1):1-12. http://asianjtm.syphu.edu.cn/EN/

Ameur E, Sarra M, Yosra D, Mariem K, Nabil A, Lynen F, Larbi KM (2021). Chemical composition of essential oils of eight Tunisian Eucalyptus species and their antibacterial activity against strains responsible for otitis. BMC Complementary Medicine and Therapies 21(1):1-16. https://doi.org/10.1186/s12906-021-03412-0

Ashour HM (2008). Antibacterial, antifungal, and anticancer activities of volatile oils and extracts from stems, leaves, and flowers of Eucalyptus sideroxylon and Eucalyptus torquata. Cancer Biology & Therapy 7(3):399-403. https://doi.org/10.4161/cbt.7.3.5367

Balti H, Abassi M, Dietz KJ, Kumar V (2021). Differences in ionic, enzymatic, and photosynthetic features characterize distinct salt tolerance in Eucalyptus species. Plants 10(7):1401. https://doi.org/10.3390/plants10071401

Baranska M, Schulz H, Reitzenstein S, Uhlemann U, Strehle MA, Krüger H, … Popp J (2005). Vibrational spectroscopic studies to acquire a quality control method of Eucalyptus essential oils. Biopolymers: Original Research on Biomolecules 78(5):237-248. https://doi.org/10.1002/bip.20284

Barbosa LCA, Filomeno CA, Teixeira RR (2016). Chemical variability and biological activities of Eucalyptus Spp. essential oils. Molecules 21(12):1671. https://doi.org/10.3390/molecules21121671

Bardaweel S, Hudaib M, Tawaha K (2014). Evaluation of antibacterial, antifungal, and anticancer activities of essential oils from six species of Eucalyptus. Journal of Essential Oil Bearing Plants 17(6):1165-74. https://doi.org/10.1080/0972060X.2014.963169

Bardaweel SK, Hudaib MM, Tawaha KA, Bashatwah RM, Material AP (2015). Antimicrobial, antioxidant and Free Radical Scavenging activities of essential oils extracted from six Eucalyptus species. International Journal of Biotechnology and Bioengineering 9(1):66-69. https://doi.org/10.5281/zenodo.1099314

Batish DR, Singh HP, Kohli RK, Kaur S (2008). Eucalyptus essential oil as a natural pesticide. Forest Ecology and Management 256(12):2166-74. https://doi.org/10.1016/j.foreco.2008.08.008

Ben Hassine D, Ben Ismail H, Jribi C, Khouja ML, Abderrabba M (2010). Chemical composition of some Tunisian Eucalyptus essential oils as obtained by hydrodistillation using Clevenger type apparatus. Biosciences Biotechnology Research Asia 7(2):647-665.

Bhuyan DJ, Vuong QV, Chalmers AC, Van Altena IA, Bowyer MC, Scarlett CJ (2017). Phytochemical, antibacterial and antifungal properties of an aqueous extract of Eucalyptus microcorys leaves. South African Journal of Botany 112:180-85. https://doi.org/10.1016/j.sajb.2017.05.030

Bignell CM, Dunlop PJ, Brophy JJ (1997a). Volatile leaf oils of some Queensland and Northern Australian species of the genus Eucalyptus. (Series Ii). Part i. Subgenus Symphyomyrtus, Section Adnataria:(A) Series Oliganthae,(b) Series Ochrophloiae,(c) Series Moluccanae,(d) Series Polyanthemae,(e) Se. Flavour and Fragrance Journal 12(1):19-27. https://doi.org/10.1002/(SICI)1099-1026(199701)12:1<19::AID-FFJ597>3.0.CO;2-F

Bignell CM, Dunlop PJ, Brophy JJ (1997b). Volatile leaf oils of some Queensland and Northern Australian species of the genus Eucalyptus (Series II). Part II. Subgenera (a) Blakella,(b) Corymbia,(c) Unnamed,(d) Idiogenes,(e) Monocalyptus and (f) Symphyomyrtus. Flavour and Fragrance Journal 12(4):277-84. https://doi.org/10.1002/(SICI)1099-1026(199707)12:4<277::AID-FFJ642>3.0.CO;2-B

Boland DJ, Brophy JJ, House APN (1991). Eucalyptus leaf oils: use, chemistry, distillation and marketing. Phytochemistry 31(6):2193. https://doi.org/10.1016/0031-9422(92)80403-2

Bouhlali EDT, Derouich M, Ben-Amar H, Meziani R, Essarioui A (2020). Exploring the potential of using bioactive plant products in the management of Fusarium oxysporum f. Sp. Albedinis: The causal agent of Bayoud disease on Date Palm (Phoenix dactylifera L.). Beni-Suef University Journal of Basic and Applied Sciences 9(1):1-9. https://doi.org/10.1186/s43088-020-00071-x

Bouhlali EDT, Derouich M, Meziani R, Essarioui A (2021). Antifungal potential of phytochemicals against Mauginiella scaettae, the plant pathogen causing inflorescence rot of Date Palm. Scientifica 2021:1896015. https://doi.org/10.1155/2021/1896015

Bowyer BC, Jefferies PR (1959). Studies in plant chemistry: The Essential oils of Eucalyptus caesia Benth. and E. torquata Luehm. and the structure of Torquatone. Australian Journal of Chemistry 12(3):442-446. https://doi.org/10.1071/CH9590442

Chamali S, Ben Daoud H, Saadaoui E, Elfalleh W, Romdhane M (2019). A new process for the green extraction of essential oil from Eucalyptus oleosa: Microwave-assisted hydrodistillation. Arabian Journal of Medicinal and Aromatic Plants 5(3):35-46. https://doi.org/10.48347/IMIST.PRSM/ajmapv5i3.18666

Chamali S, Bouajila J, Ben Daoud H, Camy S, Saadaoui E, Condoret JS, Romdhane M (2021). Variation in chemical composition and biological properties of two Tunisian Eucalyptus essential oils under three eco-friendly extraction techniques. Journal of Essential Oil Research 34(1):36-53. https://doi.org/10.1080/10412905.2021.2008029

Chandorkar N, Tambe S, Amin P, Madankar C (2021). A systematic and comprehensive review on current understanding of the pharmacological actions, molecular mechanisms, and clinical implications of the genus Eucalyptus. Phytomedicine Plus 1(4):100089. https://doi.org/10.1016/j.phyplu.2021.100089

Chen H, Jiang JG (2010). Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews 18(NA):309-319. https://doi.org/10.1139/A10-014

Yiğit Hanoğlu D, Hanoğlu A, Adediran SB, Baser KHC, Özkum Yavuz D (2022). The essential oil compositions of two Eucalyptus sp. (E. camaldulensis Dehnh. and E. torquata Luehm.) naturalized to Cyprus. Journal of Essential Oil Research. https://doi.org/10.1080/10412905.2022.2147592

Derwich E, Benziane Z, Boukir A (2009). GC/MS analysis of volatile constituents and antibacterial activity of the essential oil of the leaves of Eucalyptus globulus in Atlas median from Morocco. Advances in Natural and Applied Sciences 3(3):305-314. http://www.insipub.com/aensi/anas/2009/305-313.pdf

Dhakad AK, Pandey VV, Beg S, Rawat JM, Singh A (2018). Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: A review. Journal of the Science of Food and Agriculture 98(3):833-848. https://doi.org/10.1002/jsfa.8600

Ebadollahi A, Naseri B, Abedi Z, Setzer WN, Changbunjong T (2022). Promising insecticidal efficiency of essential oils isolated from four cultivated Eucalyptus species in Iran against the lesser grain borer, Rhyzopertha dominica (F.). Insects 13(6):517. https://doi.org/10.3390/insects13060517

Ebadollahi A, Sendi JJ, Maroufpoor M, Rahimi-Nasrabadi M (2017). Acaricidal potentials of the terpene-rich essential oils of two Iranian Eucalyptus Species against Tetranychus urticae Koch. Journal of Oleo Science 66(3):307-314. https://doi.org/10.5650/jos.ess15258

Eisikowitch D, Dag A, Samocha Y (2012). Two Eucalypts and one hybrid as a potential source of pollen and nectar in Israel. American Bee Journal 152(6):607-609.

El-Juhany L, Al Al-Shaikh AM (2015). Evaluation of the growth and adaptability of some exotic Acacia and Eucalyptus species to Riyadh Region, Saudi Arabia. Research Journal of Agriculture 2:1-12.

El-juhany LI, Aref IM, Ahmed AIM (2008). Response of Eucalyptus camaldulensis, Eucalyptus microtheca and Eucalyptus intertexta seedlings to irrigation with saline water. World Journal of Agricultural Sciences 4:825-834. https://www.idosi.org/wjas/wjas4(s)/5.pdf

Elaissi A, Medini H, Simmonds M, Lynen F, Farhat F, Chemli R, … Khouja ML (2010). Variation in volatile leaf oils of twelve Eucalyptus species harvested from Hajeb Layoun arboreta (Tunisia). Chemistry & Biodiversity 7(3):705-716. https://doi.org/10.1002/cbdv.201000103

Elaissi A, Medini H, Simmonds M, Lynen F, Farhat F, Chemli R, … Khouja ML (2011a). Variation in volatile leaf oils of five Eucalyptus species harvested from Jbel Abderrahman arboreta (Tunisia). Chemistry & Biodiversity 8(2):352-361. https://doi.org/10.1002/cbdv.201000103

Elaissi A, Medini H, Simmonds M, Lynen F, Farhat F, Chemli R, … Khouja ML (2011b). Variation in volatile leaf oils of seven Eucalyptus species harvested from Zerniza arboreta (Tunisia). Chemistry & Biodiversity 8(2):362-372. https://doi.org/10.1002/cbdv.201000103

Elaissi A, Rouis Z, Mabrouk S, Bel Haj Salah K, Aouni M, Khouja ML, … Harzallah-Skhiri F. (2012). Correlation between chemical composition and antibacterial activity of essential oils from fifteen Eucalyptus species growing in the Korbous and Jbel Abderrahman arboreta (North East Tunisia). Molecules 17(3):3044-3057. https://doi.org/10.1002/cbdv.201000103

Elaissi A, Rouis Z, Salem NAB, Mabrouk S, Ben Salem Y, Salah KBH, … Khouja ML (2012). Chemical composition of eight Eucalyptus species essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC Complementary and Alternative Medicine 12(1):1-15. https://doi.org/10.1186/1472-6882-12-81

Elaissi A, Salah KH, Mabrouk S, Larbi KM, Chemli R, Harzallah-Skhiri F (2011). Antibacterial activity and chemical composition of twenty Eucalyptus species essential oils. Food Chemistry 129(4):1427-1434. https://doi.org/10.1016/j.foodchem.2011.05.100

Elansary HO, Salem MZM, Ashmawy NA, Yessoufou K, El-Settawy AAA (2017). In vitro antibacterial, antifungal and antioxidant activities of Eucalyptus Spp. leaf extracts related to phenolic composition. Natural Product Research 31(24):2927-2930. https://doi.org/10.1080/14786419.2017.1303698

El Finti A, El Boullani R, Zahidi A, El Mousadik A (2022). Management of the Prickly Pear Mealy Bug, Dactylopius opuntiae using bio-insecticide in Morocco. Advances in Entomology 10(4):267-74. https://doi.org/10.4236/ae.2022.104019

Gakuubi MM, Maina AW, Wagacha JM (2017). Antifungal activity of essential oil of Eucalyptus camaldulensis Dehnh. against selected Fusarium Spp. International Journal of Microbiology 2017:8761610. https://doi.org/10.1155/2017/8761610

Gallon C, Martello RH, Cozzer G, Rezende CAL, Calisto JFF, Floss PA, … Albeny-Simões D (2020). Chemistry matters: Biological activity of Eucalyptus essential oils on Mosquito larval mortality. Entomologia Experimentalis et Applicata 168(5):407-415. https://doi.org/10.1111/eea.12908

Ghaffar A, Yameen M, Kiran S, Kamal S, Jalal F, Munir B, … Jabbar A (2015). Chemical composition and in-vitro evaluation of the antimicrobial and antioxidant activities of essential oils extracted from seven Eucalyptus species. Molecules 20(11):20487-20498. https://doi.org/10.3390/molecules201119706

Ghisalberti EL (1996). Bioactive Acylphloroglucinol derivatives from Eucalyptus species. Phytochemistry 41(1):7-22. https://doi.org/10.1016/0031-9422(95)00484-X

Gilles M, Zhao J, An M, Agboola S (2010). Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species. Food Chemistry 119(2):731-737. https://doi.org/10.1016/j.foodchem.2009.07.021

Goldbeck JC, do Nascimento JE, Jacob RG, Fiorentini ÂM, da Silva WP (2014). Bioactivity of essential oils from Eucalyptus globulus and Eucalyptus urograndis against planktonic cells and biofilms of Streptococcus mutans. Industrial Crops and Products 60:304-309. https://doi.org/10.1016/j.indcrop.2014.05.030

Harkat-Madouri L, Asma B, Madani K, Bey-Ould Si Said Z, Rigou P, Grenier D, … Boulekbache-Makhlouf L (2015). Chemical composition, antibacterial and antioxidant activities of essential oil of Eucalyptus globulus from Algeria. Industrial Crops and Products 78:148-153. https://doi.org/10.1016/j.indcrop.2015.10.015

Ben Hassine D, Ben Ismail H, Jribi C, Khouja ML, Abderrabba M (2016). Chemical composition of some Tunisian Eucalyptus essential oils as obtained by hydrodistillation using Clevenger type apparatus. Biosciences Biotechnology Research Asia 7(2):647-656. https://www.biotech-asia.org/?p=8997

Herzi N, Bouajila J, Camy S, Cazaux S, Romdhane M, Condoret JS (2013). Comparison between Supercritical CO2 extraction and hydrodistillation for two species of Eucalyptus: Yield, chemical composition, and antioxidant activity. Journal of Food Science 78(5):67-72. https://doi.org/10.1111/1750-3841.12113

Ishnava KB, Chauhan JB, Barad MB (2013). Anticariogenic and phytochemical evaluation of Eucalyptus globules Labill. Saudi Journal of Biological Sciences 20(1):69-74. https://doi.org/10.1016/j.sjbs.2012.11.003

Khouja ML, Khaldi A, Rejeb MN (2001). Results of the Eucalyptus introduction trials inTunisia. Proceeding of the international conference on Eucalyptus in the Mediterranean basin: Perspectives and new utilization. Centro Promozione Pubblicità, Florence, Taormina-Italy: pp 163-168.

Knezevic P, Aleksic V, Simin N, Svircev E, Petrovic A, Mimica-Dukic N (2016). Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. Journal of Ethnopharmacology 178:125-136. https://doi.org/10.1016/j.jep.2015.12.008

Lahmadi G, Lahmar A, Znati M, Elaieb MT, Khouja ML, Ascrizzi R, … Jannet HB (2021). Chemical composition and cytotoxic activity of Eucalyptus torquata Luehm. and Eucalyptus salmonophloia F. Muell. Tru. Chemistry & Biodiversity 18(11):2100315. https://doi.org/10.1016/j.jep.2015.12.008

Li C, Wang K (2003). Differences in drought responses of three contrasting Eucalyptus microtheca F. Muell. populations. Forest Ecology and Management 179(1-3):377-385. https://doi.org/10.1016/S0378-1127(02)00552-2

Limam H, Ben Jemaa M, Tammar S, Ksibi N, Khammassi S, Jallouli S, … Msaada K (2020). Variation in chemical profile of leaves essential oils from thirteen Tunisian Eucalyptus species and evaluation of their antioxidant and antibacterial properties. Industrial Crops and Products 158:112964. https://doi.org/10.1016/j.indcrop.2020.112964

Luís Â, Duarte A, Gominho J, Domingues F, Duarte AP (2016). Chemical composition, antioxidant, antibacterial and Anti-Quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Industrial Crops and Products 79:274-282. https://doi.org/10.1016/j.indcrop.2015.10.055

Madsen PA, Mulligan DR (2006). Effect of NaCl on emergence and growth of a range of provenances of Eucalyptus citriodora, Eucalyptus populnea, Eucalyptus camaldulensis and Acacia salicina. Forest Ecology and Management 228(1-3):152-159. https://doi.org/10.1016/j.foreco.2006.02.044

Marzoug HNB, Romdhane M, Lebrihi A, Lebrihi F, Couderc F, Abderraba M, … Bouajila J (2011). Eucalyptus oleosa essential oils: Chemical composition and antimicrobial and antioxidant activities of the oils from different plant parts (stems, leaves, flowers and fruits). Molecules 16(2):1695-1709. https://doi.org/10.3390/molecules16021695

May FE, Ash JE (1990). An assessment of the allelopathic potential of Eucalyptus. Australian Journal of Botany 38(3):245-254 .https://doi.org/10.1071/BT9900245

Mechergui K, Jaouadi W, Naghmouchi S, Alsubeie M, Khouja ML (2019). Micromorphological observation of Eucalyptus seeds, multivariate statistical analyses and modeling of their germination under salt stress and osmotic constraint. Cerne 25:156-171. https://doi.org/10.1590/01047760201925022635

Mossi AJ, Astolfi V, Kubiak G, Lerin L, Zanella C, Toniazzo G, … Restello R (2011). Insecticidal and repellency activity of essential oil of Eucalyptus Sp. against Sitophilus zeamais Motschulsky (Coleoptera, Curculionidae). Journal of the Science of Food and Agriculture 91(2): 273-277. https://doi.org/10.1002/jsfa.4181

Mulyaningsih S, Sporer F, Reichling J, Wink M (2011). Antibacterial activity of essential oils from Eucalyptus and of selected components against multidrug-resistant bacterial pathogens. Pharmaceutical Biology 49(9):893-899. https://doi.org/10.3109/13880209.2011.553625

Mulyaningsih S, Sporer F, Zimmermann S, Reichling J, Wink M (2010). Synergistic properties of the terpenoids Aromadendrene and 1,8-Cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine 17(13):1061-1066. https://doi.org/10.1016/j.phymed.2010.06.018

Najum Rasheed A, Muhammad Asif N, Umer R (2005). Chemical compositional and intra provenance variation for content of essential oil in Eucalyptus crebra. Asian Journal of Plant Sciences 4(5):519-523. https://doi.org/10.3923/ajps.2005.519.523

Nasim M, Qureshi RH, Aziz T, Saqib M, Nawaz S, Sahi ST, Pervaiz S (2008). Growth and ionic composition of salt stressed Eucalyptus camaldulensis and Eucalyptus teretcornis. Pakistan Journal of Botany 40(2):799-805.

Nikbakht MR, Rahimi-Nasrabadi M, Ahmadi F, Gandomi H, Abbaszadeh S, Batooli H (2015). The chemical composition and in vitro antifungal activities of essential oils of five Eucalyptus species. Journal of Essential Oil Bearing Plants 8(3):666-677. https://doi.org/10.1080/0972060X.2014.935061

Oerke EC (2006). Crop losses to pests. The Journal of Agricultural Science 144(1):31-43. https://doi.org/10.1017/S0021859605005708

Ogunwande IA, Olawore NO, Adeleke KA, Konig WA (2003). Chemical composition of the essential oils from the leaves of three Eucalyptus species growing in Nigeria. Journal of Essential Oil Research 15(5):297-301. https://doi.org/10.1080/10412905.2003.9698595

Palá-Paúl J, Pérez-Alonso MJ, Velasco-Negueruela A, Sanz J (2002). Study of essential oils of Eucalyptus resinifera Smith, E. tereticornis Smith and Corymbia Maculata (Hook.) grown in Cuba. Flavour and Fragrance Journal 17(1):1-4. https://doi.org/10.1002/ffj.1026

Pimentel D, Acquay H, Biltonen M, Rice P, Silva M, Nelson J, … D’Amore M (1992). Environmental and economic costs of pesticide use. BioScience 42(10):750-760. https://doi.org/10.2307/1311994

Radwan SM, Zidan ZH, El-Hammady A, Aly MM (2000). Field performance of tested Eucalyptus plant extracts, biocides and conventional pesticides against key pests infesting cotton in Egypt. Annals of Agricultural Science (Cairo) 45(2): 777-791. https://www.cabdirect.org/cabdirect/abstract/20013015331

Raja N (2014). Botanicals: Sources for eco-friendly biopesticides. Journal of Biofertilizers and Biopesticides 5(1):1. https://doi.org/10.4172/2155-6202.1000e122

Saadaoui E, Ben Yahia K, Dhahri S, Ben Jamaa ML, Khouja ML (2017). An overview of adaptative responses to drought stress in Eucalyptus spp. Forestry Studies 67(1):86. https://doi.org/10.1515/fsmu-2017-0014

Saadaoui E, Ben Yahia K, Chemlali I, Belaïd S, Ben Romdhane C (2022). Eucalypt in the Tunisian arid region: Diversity and valorization for honey production. International Journal of Agriculture and Nutrition 4(1):1-5.

Sadraoui-Ajmi I, Benali N, Soltani A, Chaib S, Limem E, Jallouli S, … Mediouni-Ben Jemâa J (2022). Usage of agricultural DAP-Fertilizer and Eucalyptus essential oils as potential attractants against the Mediterranean fruit fly Ceratitis capitata (Tephritidae). Journal of Asia-Pacific Entomology 25(1):101857. https://doi.org/10.1016/j.aspen.2021.101857

Salehi B, Sharifi-Rad J, Quispe C, Llaique H, Villalobos M, Smeriglio A, … Martins N (2019). Insights into Eucalyptus genus chemical constituents, biological activities and health-promoting effects. Trends in Food Science & Technology 91:609-624. https://doi.org/10.1016/j.tifs.2019.08.003

Salem N, Kefi S, Tabben O, Ayed A, Jallouli S, Feres N, … Elkahoui S (2018). Variation in chemical composition of Eucalyptus globulus essential oil under phenological stages and evidence synergism with antimicrobial standards. Industrial Crops and Products 124:115-125. https://doi.org/10.1016/j.indcrop.2018.07.051

Sanders GJ, Arndt SK (2012). Osmotic adjustment under drought conditions: Plant responses to drought stress: from morphological to molecular features. Springer, Berlin Heidelberg pp 199-229. https://doi.org/10.1007/978-3-642-32653-0-8

Scazzocchio F, Garzoli S, Conti C, Leone C, Renaioli C, Pepi F, Angiolella L (2016). Properties and limits of some essential oils: Chemical characterisation, antimicrobial activity, interaction with antibiotics and cytotoxicity. Natural Product Research 30(17):1909-1918. https://doi.org/10.1080/14786419.2015.1086346

Sebei K, Sakouhi F, Herchi W, Khouja ML, Boukhchina S (2015). Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biological Research 48(1):1-5. https://doi.org/10.1186/0717-6287-48-7

Sefidkon F, Assareh MH, Abravesh Z, Barazandeh MM (2010). Chemical composition of the essential oils of four cultivated Eucalyptus species in iran as medicinal plants (E. microtheca, E. spathulata, E. largiflorens and E. torquata). Iranian Journal of Pharmaceutical Research 2:135-140. https://doi.org/10.22037/ijpr.2010.711

Sefidkon F, Bahmanzadegan A, Assareh MH (2008). Effect of distillation methods and harvesting times on the essential oil and cineole content of Eucalyptus dealbata. Chemistry of Natural Compounds 44(2):250-253. https://doi.org/10.1080/0972060X.2008.10643626

shariat A, Assareh MH (2016). Physiological and biochemical responses of eight Eucalyptus species to salinity stress. Ecopersia 4(1):1269-1282. https://doi.org/10.18869/modares.ecopersia.4.1.1269

Silva J, Abebe W, Sousa SM, Duarte VG, Machado MIL, Matos FJA (2003). Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. Journal of Ethnopharmacology 89(2-3):277-283. https://doi.org/10.1016/j.jep.2003.09.007

Silva SM, Abe SY, Murakami FS, Frensch G, Marques FA, Nakashima T (2011). Essential oils from different plant parts of Eucalyptus cinerea F. Muell. Ex Benth. (Myrtaceae) as a source of 1,8-Cineole and their bioactivities. Pharmaceuticals 4(12):1535-1550. https://doi.org/10.3390/ph4121535

Singh IP, Sidana J, Bansal P, Foley WJ (2009). Phloroglucinol compounds of therapeutic interest: Global patent and technology status. Expert Opinion on Therapeutic Patents 19(6):847-866. https://doi.org/10.1517/13543770902916614

Siramon P, Ohtani Y (2007). Antioxidative and antiradical activities of Eucalyptus camaldulensis leaf oils from Thailand. Journal of Wood Science 53(6):498-504. https://doi.org/10.1007/s10086-007-0887-7

Souden S, Ennajeh M, Ouledali S, Massoudi N, Cochard H and Khemira H (2020). Water relations, photosynthesis, xylem embolism and accumulation of carbohydrates and cyclitols in two Eucalyptus species (E. camaldulensis and E. torquata) subjected to dehydration–rehydration cycle. Trees 34(6):1439-1452. https://doi.org/10.1007/s00468-020-02016-4

Teulieres C, Bossinger G, Moran G, Marque C (2007). Stress studies in Eucalyptus. Plant Stress 1(2):197-215.

Üstüner T, Kordali Ş, Bozhüyük AU, Kesdek M (2018). Investigation of pesticidal activities of essential oil of Eucalyptus camaldulensis Dehnh. Records of Natural Products 12(6):557-568. https://doi.org/10.25135/rnp.

Vuong QV, Chalmers AC, Jyoti Bhuyan D, Bowyer MC, Scarlett CJ (2015). Botanical, phytochemical, and anticancer properties of the Eucalyptus species. Chemistry & Biodiversity 12(6):907-924. https://doi.org/10.1002/cbdv.201400327

White DA, Turner NC, Galbraith JH (2000). Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia. Tree Physiology 20(17):1157-1165. https://doi.org/10.1093/treephys/20.17.1157

Wilkinson JM, Cavanagh HMA (2005). Antibacterial activity of essential oils from Australian native plants. Phytotherapy Research 19(7):643-646. https://doi.org/10.1002/ptr.1716

Yao ZW, Liu H, Zhou R, Feng MY, Wang F, Qin XJ, … Zheng YT (2021). Non-volatile Acylphloroglucinol components from Eucalyptus robusta inhibit Zika virus by impairing RdRp activity of NS5. Bioorganic Chemistry 116:105303. https://doi.org/10.1016/j.bioorg.2021.105303

Yiğit Hanoğlu D, Hanoğlu A, Adediran SB, Baser KHC, Özkum Yavuz D (2022). The essential oil compositions of two Eucalyptus sp. (E. camaldulensis Dehnh. and E. torquata Luehm.) naturalized to Cyprus. Journal of Essential Oil Research. https://doi.org/10.1080/10412905.2022.2147592

Zandi-Sohani N, Ramezani L (2015). Evaluation of five essential oils as botanical acaricides against the strawberry spider mite Tetranychus turkestani Ugarov and Nikolskii. International Biodeterioration & Biodegradation 98:101-106. https://doi.org/10.1016/j.ibiod.2014.12.007

Zhang J, An M, Wu H, Stanton R, Lemerle D (2010). Chemistry and bioactivity of Eucalyptus essential oils. Allelopathy Journal 25(2):313-330.

Zhou LJ, Li FR, Huang LJ, Yang ZR, Yuan S, Bai LH (2016). Antifungal activity of Eucalyptus oil against Rice Blast fungi and the possible mechanism of gene expression pattern. Molecules 21(5):621. https://doi.org/10.3390/molecules21050621

Zhu JK (2001). Plant salt tolerance. Trends in Plant Science 6(2):66-71. https://doi.org/10.1016/S1360-1385(00)01838-0

Zrira S, Khiranr FEL, Benjllalr B (1994). Huiles essentielles de six espèces xérophyles d’Eucalyptus: Effet du milieu sur les rendements et la composition chimique [Essential oils of six xerophilic Eucalyptus species: effect of location on the yield and the chemical composition]. Revue Marocaine des Sciences Agronomiques et Vétérinaires 14(1):5-9.



How to Cite

Ben RABEH, S., Ben YAHIA, K., DHAHRI, S., BELAÏD, S., CHEMLALI, I., Ben ROMDHANE, C., ROMDHANE, M., & SAADAOUI, E. (2023). Environmental stress tolerance, hydro-distilled essential oils characteristics and biological activities of Eucalyptus torquata Luehm. Notulae Scientia Biologicae, 15(2), 11502. https://doi.org/10.55779/nsb15211502



Review articles
DOI: 10.55779/nsb15211502

Most read articles by the same author(s)