From skin infection to invasive diseases: A descriptive review of Staphylococcus aureus, focusing on Panton-Valentine leucocidin and methicillin-resistant strains
DOI:
https://doi.org/10.55779/nsb15111402Keywords:
bio guided fractionation, natural products, resistance, Staphylococcus aureusAbstract
Despite advances in scientific research, Staphylococccus aureus remains a pyogenic and toxigenic bacterium involved in different infections, it endowed with the capacity to infect several biotopes and cause a wide range of infections ranging from skin diseases to other serious pathologies such as pneumonia, meningitis, sepsis, osteomyelitis and infectious endocarditis. Moreover, the emergence of resistant strains constitutes a serious public health problem. Thus, the development of new active compounds from natural sources such as medicinal plants is urgently needed. To this end, the aim of our review was to describe the state of art of infections caused by S. aureus, its pathogenesis, treatment and to provide a synthesis about studies reporting a bio guided isolation of most promising compounds selected for their anti-staphylococcal activity.
Metrics
References
Accarias S (2014). Impact du phénotype des macrophages résidents sur la nature de la réponse inflammatoire précoce lors d’une infection par Staphylococcus aureus.
Aguilar J, Urday-Cornejo V, Donabedian S, Perri M, Tibbetts R, Zervos M (2010). Staphylococcus aureus meningitis case series and literature review. Medicine (Baltimore) 89:117-125. https://doi.org/10.1097/MD.0b013e3181d5453d
Ahmad S, Raqeeb A, Ali F, Hameed MS, Anwar M (2018). Characterization of novel antibiotic resistance genes in Staphylococcal aureus. Journal of Bacteriology and Mycology 6:11-13. https://doi.org/10.15406/jbmoa.2018.06.00167
Al-bayati A, Alshami A, AlAzzawi M, Al Hillan A, Hossain M (2020). Metastatic osteoarticular infective endocarditis by methicillin-sensitive Staphylococcus aureus. Cureus 12. https://doi.org/10.7759/cureus.8124
Andersen MH, Holle SLK, Klein CF, Bruun NE, Arpi M, Bundgaard H, … Iversen KK (2020). Risk for infective endocarditis in bacteremia with Gram positive cocci. Infection 48:905-912. https://doi.org/10.1007/s15010-020-01504-6
Archer GL (1998). Staphylococcus aureus: A well-armed pathogen. Clinical Infectious Diseases. https://doi.org/10.1086/520289
Ashu FA, Na-Iya J, Wamba BEN, Kamga J, Nayim P, Ngameni B, … Kuete V (20200. Antistaphylococcal Activity of extracts, fractions, and compounds of Acacia polyacantha Wild (Fabaceae). Evidence-Based Complementary and Alternative Medicine 1-10. https://doi.org/10.1155/2020/2654247
Baselga R, Albizu I, De la Cruz M, Del Cacho E, Barberan M, Amorena B (1993). Phase variation of slime production in Staphylococcus aureus: Implications in colonization and virulence. Infection and Immunity 61:4857-4862. https://doi.org/10.1128/iai.61.11.4857-4862.1993
Bawazir YM, Mustafa MA (20200. Acute esophageal necrosis associated with methicillin-resistant Staphylococcus aureus septicemia: A case report. Cureus 12. https://doi.org/10.7759/cureus.8720
Bérubé-Gagnon J (2006). Isolation et identification de composés antibiotiques des écorces de Picea mariana. Univ. du Québec.
Bouchiat C, Moreau K, Devillard S, Rasigade JP, Mosnier A, Geissmann T, … Verchère A (2015). Staphylococcus aureus infective endocarditis versus bacteremia strains: Subtle genetic differences at stake. Infection, Genetics and Evolution 36:524-530. https://doi.org/10.1016/j.meegid.2015.08.029
Butler MS (2004). The role of natural product chemistry in drug discovery. Journal of Natural Products 67:2141-2153. https://doi.org/10.1021/np040106y
Butrico CE, Cassat JE (2020). Quorum sensing and toxin production in Staphylococcus aureus osteomyelitis: Pathogenesis and paradox. Toxins (Basel) 12:1-22. https://doi.org/10.3390/toxins12080516
CDC (2013). ANTIBIOTIC RESISTANCE THREATS in the United states, MCenters for Disease Control and Prevention. https://doi.org/10.1016/j.medmal.2007.05.006
Chabán MF, Karagianni C, Joray MB, Toumpa D, Sola C, Crespo MI, … Carpinella MC (2019). Antibacterial effects of extracts obtained from plants of Argentina: Bioguided isolation of compounds from the anti-infectious medicinal plant Lepechinia meyenii. Journal of Ethnopharmacology 239:111930. https://doi.org/10.1016/j.jep.2019.111930
Chaplin S (2020). NICE on antimicrobial prescribing for impetigo. Prescriber 31:24-26. https://doi.org/10.1002/psb.1850
Chiang TC, Huang MS, Lu PL, Huang S Te, Lin YC (2020). The effect of oral care intervention on pneumonia hospitalization, Staphylococcus aureus distribution, and salivary bacterial concentration in Taiwan nursing home residents: A pilot study. BMC Infectios Diseases 20:1-11. https://doi.org/10.1186/s12879-020-05061-z
Chow A, Htun HL, Hon PY, Ang B, Kanagasabai K, Koh J, Holden MTG, Hsu LY (2020). Comparative epidemiology and factors associated with major healthcare-associated methicillin-resistant Staphylococcus aureus clones among interconnected acute-, intermediate- and long-term healthcare facilities in Singapore. Clinical Microbiology and Infection 27:785-e9. https://doi.org/10.1016/j.cmi.2020.07.034
Del Giudice P (2020). Skin infections caused by Staphylococcus aureus. Acta Dermato-Venereologica 100:208-215. https://doi.org/10.2340/00015555-3466
Delekta PC, Shook JC, Lydic TA, Mulks MH, Hammer ND (2018). Staphylococcus aureus utilizes host-derived lipoprotein particles as sources of fatty acids. Journal of Bacteriology 200(11):e00728-17.
Diaz R, Afreixo V, Ramalheira E, Rodrigues C, Gago B (20170. Evaluation of vancomycin MIC creep in methicillin-resistant Staphylococcus aureus infections—a systematic review and meta-analysis. Clinical Microbiology and Infection 24:97-104. https://doi.org/10.1016/j.cmi.2017.06.017
Diep BA, Chan L, Tattevin P, Kajikawa O, Martin TR, Basuino L, … Chambers HF (2010). Polymorphonuclear leukocytes mediate Staphylococcus aureus Panton-Valentine leukocidin-induced lung inflammation and injury. Proceedings of the National Academy of Science USA 107:5587-5592. https://doi.org/10.1073/pnas.0912403107
Đukanović S, Cvetković S, Lončarević B, Lješević M, Nikolić B, Simin N, Bekvalac K, Kekić D, Mitić-Ćulafić D (20200. Antistaphylococcal and biofilm inhibitory activities of Frangula alnus bark ethyl-acetate extract. Industrial Crops Production 158. https://doi.org/10.1016/j.indcrop.2020.113013
Duployez C, Le Guern R, Tinez C, Lejeune AL, Robriquet L, Six S, ... Wallet F (2020). Panton-valentine leukocidin–secreting Staphylococcus aureus pneumonia complicating COVID-19. Emerging Infectious Diseases 26(8):1939.
EUR-RC (2011). European strategic action plan on antibiotic resistance.
Falugi F, Kim HK, Missiakas DM, Schneewind O (2013). Role of protein a in the evasion of host adaptive immune responses by Staphylococcus aureus. MBio 4:1-9. https://doi.org/10.1128/mBio.00575-13
Freeman-Cook L, Freeman-Cook KD, Alcamo IE (2006). Staphylococcus aureus infections. Infobase publishing.
Gajdács M (2019). The continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics 8. https://doi.org/10.3390/antibiotics8020052
Gershell LJ, Atkins JH (2003). A brief history of novel drug discovery technologies. Nature Reviews Drug Discovery 2:321-327. https://doi.org/10.1038/nrd1064
Gómez MI, Lee A, Reddy B, Muir A, Soong G, Pitt A, Cheung A, Prince A (2004). Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1. Nature Medicine 10:842-848. https://doi.org/10.1038/nm1079
Grillo S, Cuervo G, Carratalà J, Grau I, Llaberia M, Aguado JM, … Pujol M (2020). Characteristics and outcomes of Staphylococcus aureus bloodstream infection originating from the urinary tract: A multicenter cohort study. Open Forum Infectious Diseases 7:1-8. https://doi.org/10.1093/ofid/ofaa216
Grousd JA, Rich HE, Alcorn JF (2019). Host-pathogen interactions in gram-positive bacterial pneumonia. Clinical Microbiology Reviews 32:1-22. https://doi.org/10.1128/CMR.00107-18
Guidi AC, de Paula MN, Mosela M, Delanora LA, Soares GCA, de Morais GR, … Mello JCP de (2020). Stem bark extract of Poincianella pluviosa incorporated in polymer film: Evaluation of wound healing and anti-staphylococcal activities. Injury 51:840-849. https://doi.org/10.1016/j.injury.2020.02.027
Guo Y, Song G, Sun M, Wang J, Wang Y (2020). Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology 10:1-11. https://doi.org/10.3389/fcimb.2020.00107
Horn J, Stelzner K, Rudel T, Fraunholz M (2017). Inside job: Staphylococcus aureus host-pathogen interactions. International Journal of Medical Microbiology 308:607-624. https://doi.org/10.1016/j.ijmm.2017.11.009
Huang J, Zhang T, Zou X, Wu S, Zhu J (2020). Panton-valentine leucocidin carrying Staphylococcus aureus causing necrotizing pneumonia inactivates the JAK/STAT signaling pathway and increases the expression of inflammatory cytokines, Infection, Genetics and Evolution. Elsevier B.V. https://doi.org/10.1016/j.meegid.2020.104582
Ismail H, Govender NP, Singh-Moodley A, Van Schalkwyk E, Shuping L, Moema I, … Perovic O (2020). An outbreak of cutaneous abscesses caused by Panton-Valentine leukocidin-producing methicillin-susceptible Staphylococcus aureus among gold mine workers, South Africa, November 2017 to March 2018. BMC Infectious Diseases 20:1-13. https://doi.org/10.1186/s12879-020-05352-5
Jenul C, Horswill AR (2019). Regulation of Staphylococcus aureus virulence. Microbiology Spectre 7. https://doi.org/10.1128/microbiolspec.gpp3-0031-2018
Khoshnood S, Heidary M, Asadi A, Soleimani S, Motahar M, Savari M, Saki M, Abdi M (2019). A review on mechanism of action, resistance, synergism, and clinical implications of mupirocin against Staphylococcus aureus. Biomed Pharmacother 109:1809-1818. https://doi.org/10.1016/j.biopha.2018.10.131
Kobayashi SD, Malachowa N, Deleo FR (2015). Pathogenesis of Staphylococcus aureus abscesses. American Journal of Pathology 185:1518-1527. https://doi.org/10.1016/j.ajpath.2014.11.030
Kok EY, Vallejo JG, Sommer LM, Rosas L, Kaplan SL, Hulten KG, Chase McNeil J (2018). Association of vancomycin mic and molecular characteristics with clinical outcomes in methicillin-susceptible Staphylococcus aureus acute hematogenous osteoarticular infections in children. Antimicrobial Agents and Chemotherapy 62:e00084-18. https://doi.org/10.1128/AAC.00084-18
Lai CC, Lee CM, Chiang HT, Lu MC, Wang LF, Tsai TL, … Hsueh PR (2017). Methicillin-resistant Staphylococcus aureus sequence type 45 with high rates of ciprofloxacin and tetracycline resistance in the residents and environments of long-term care facilities in Taiwan. Journal of Infection 76:305-307. https://doi.org/10.1016/j.jinf.2017.11.003
Landrum ML, Neumann C, Cook C, Chukwuma U, Ellis MW, Hospenthal DR, Murray CK (2012). Epidemiology of Staphylococcus aureus blood and skin and soft tissue infections in the US Military Health System, 2005-2010. JAMA - Journal of American Medical Association 308:50-59. https://doi.org/10.1001/jama.2012.7139
Lawrence HS, Nopper AJ (2012). Superficial Bacterial Skin Infections and Cellulitis. In: Fourth E (Ed). Principles and Practice of Pediatric Infectious Diseases: Fourth Edition. Elsevier Inc. https://doi.org/10.1016/B978-1-4377-2702-9.00070-2
Leemans JC, Heikens M, Van Kessel KPM, Florquin S, Van der Poll T (20030. Lipoteichoic acid and peptidoglycan from Staphylococcus aureus synergistically induce neutrophil influx into the lungs of mice. Clinical and Vaccine Immunology 10:950-953. https://doi.org/10.1128/CDLI.10.5.950-953.2003
Lehman MK, Nuxoll AS, Yamada KJ, Kielian T, Carson SD, Fey PD (2019). Protease-mediated growth of Staphylococcus aureus on host proteins Is opp3 dependent. MBio 10:1-17.
Lipinska U, Hermans K, Meulemans L, Dumitrescu O, Badiou C, Duchateau L, … Lina G (2011). Panton-Valentine leukocidin does play a role in the early stage of Staphylococcus aureus skin infections: A rabbit model. PLoS One 6:4-11. https://doi.org/10.1371/journal.pone.0022864
Lopez MS, Tan IS, Yan D, Kang J, McCreary M, Modrusan Z, … Brown EJ (2017). Host-derived fatty acids activate type VII secretion in Staphylococcus aureus. Proceedings of the National Academy of Science USA 114:11223-11228. https://doi.org/10.1073/pnas.1700627114
Lowy FD (2003). Antimicrobial resistance: the example of Staphylococcus aureus. The Journal of Clinical Investigation 111:1265-1273. https://doi.org/10.1172/JCI200318535.In
Mandell GL (1975). Catalase, superoxide dismutase, and virulence of Staphylococcus aureus on staphylococcal-leukocyte interaction. Journal of Clinical Investigation 55:561-566.
Manilal A, Sabu KR, Shewangizaw M, Aklilu A, Seid M, Merdikios B, Tsegaye B (2020a). In vitro antibacterial activity of medicinal plants against biofilm-forming methicillin-resistant Staphylococcus aureus: efficacy of Moringa stenopetala and Rosmarinus officinalis extracts. Heliyon 6:e03303. https://doi.org/10.1016/j.heliyon.2020.e03303
Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, Talan DA (2006b). Methicillin-resistant S. aureus infections among patients in the emergency department. New England Journal of Medicine 355:666-674.
Murray RJ (2005). Staphylococcus aureus infective endocarditis: Diagnosis and management guidelines. Studies 1:12-14. https://doi.org/10.1111/j.1444-0903.2005.00978.x
Nakaminami H, Ozawa K, Sasai N, Ikeda M, Nemoto O, Baba N, … Noguchi N (2020). Current status of Panton–Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus isolated from patients with skin and soft tissue infections in Japan. Journal of Dermatology 47:1280-1286. https://doi.org/10.1111/1346-8138.15506
O’Neill J (2014). Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance.
OMS (2022). Antibiotic resistance. Retrieved 2023 March 07 from: https://www.who.int/campaigns/world-antimicrobial-awareness -week/2022
OMS (2016). Plan d’action mondial pour combattre la résistance aux antimicrobiens.
Palmqvist N, Foster T, Tarkowski A, Josefsson E (2002). Protein A is a virulence factor in Staphylococcus aureus arthritis and septic death. Microbiology Pathogens 33:239-249. https://doi.org/10.1006/mpat.2002.0533
Paterson GK, Harrison EM, Holmes MA (2014). The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends in Microbiology 22:42-47. https://doi.org/10.1016/j.tim.2013.11.003
Patou J, Gevaert P, Van Zele T, Holtappels G, van Cauwenberge P, Bachert C (2008). Staphylococcus aureus enterotoxin B, protein A, and lipoteichoic acid stimulations in nasal polyps. Journal of Allergy and Clinical Immunology 121:110-115. https://doi.org/10.1016/j.jaci.2007.08.059
Petraitiene B, Conejo PR, Jankauskaite L, Kevalas R, Trumpulyte G, Snipaitiene A, Vitkauskiene A, Gurskis V (2020). Prevalence, clinical expression, invasiveness and outcome of Staphylococcus aureus containing Panton-Valentine leukocidin in children treated in a university hospital of Lithuania. Infectious Diseases (Auckl). 52:464-472. https://doi.org/10.1080/23744235.2020.1752395
Potter AD, Butrico CE, Ford CA, Curry JM, Trenary IA, Tummarakota SS, … Cassat JE (2020). Host nutrient milieu drives an essential role for aspartate biosynthesis during invasive Staphylococcus aureus infection. Proceedings of the National Academy of Science USA 117:12394-12401. https://doi.org/10.1073/pnas.1922211117
Pottinger PS (2013). Methicillin-resistant Staphylococcus aureus infections. Medical Clinics 97:601-619. https://doi.org/10.1016/j.mcna.2013.02.005
Ridder MJ, Daly SM, Triplett KD, Seawell NA, Hall PR, Bose JL (2020). Staphylococcus aureus fatty acid kinase faka modulates pathogenesis during skin infection via proteases. Infection and Immunity 88:e00163-20. https://doi.org/10.1128/IAI.00163-20
Robinson ADM, Dexter F, Renkor V, Reddy S, Loftus RW (2019). Operating room PathTrac analysis of current intraoperative Staphylococcus aureus transmission dynamics. American Journal of Infection Control 47:1240-1247. https://doi.org/10.1016/j.ajic.2019.03.028
Roch M, Gagetti P, Davis J, Ceriana P, Errecalde L, Corso A, Rosato AE (2017). Daptomycin resistance in clinical MRSA strains is associated with a high biological fitness cost. Frontiers in Microbiology 8:1-9. https://doi.org/10.3389/fmicb.2017.02303
Rochet NM, González-Barreto RM, Martín RF (2020). Characterization of pathogens isolated from cutaneous abscesses in patients evaluated by the dermatology service at an emergency department. Puerto Rico Health Sciences Journal 39:260-263. https://doi.org/10.1016/j.jaad.2018.05.312
Rouard C, Garnier F, Leraut J, Lepainteur M, Rahajamananav L, Languepin J, … Doucet-Populaire F (2018). Emergence and within-host genetic evolution of methicillin-resistant Staphylococcus aureus resistant to linezolid in a cystic fibrosis patient. Antimicrobial Agents and Chemotherapy 62:1-11. https://doi.org/10.1128/AAC.00720-18
Scudiero O, Brancaccio M, Mennitti C, Laneri S, Lombardo B, De Biasi MG, … Pero R (2020). Human defensins: A novel approach in the fight against skin colonizing Staphylococcus aureus. Antibiotics 9:1-16. https://doi.org/10.3390/antibiotics9040198
Selk A, Wood S (2019). Folliculitis. In: Vulvar Disease. Springer, pp 215-218. https://doi.org/10.1007/978-3-319-61621-6
Selton-Suty C, Célard M, Le Moing V, Doco-Lecompte T, Chirouze C, Iung B, … Hoen B (2012). Preeminence of staphylococcus aureus in infective endocarditis: A 1-year population-based survey. Clinical Infectious Disease 54:1230-1239. https://doi.org/10.1093/cid/cis199
Silago V, Mushi MF, Remi BA, Mwayi A, Swetala S, Mtemisika CI, Mshana SE (2020). Methicillin resistant Staphylococcus aureus causing osteomyelitis in a tertiary hospital, Mwanza, Tanzania. Journal of Orthopaedic Surgery and Research 15:1-6. https://doi.org/10.1186/s13018-020-01618-5
Spaan AN, Schiepers A, de Haas CJC, van Hooijdonk DDJJ, Badiou C, Contamin H, … van Strijp JAG (2015). Differential interaction of the staphylococcal toxins Panton–Valentine Leukocidin and γ-Hemolysin CB with human C5a receptors. Journal of Immunology 195:1034-1043. https://doi.org/10.4049/jimmunol.1500604
Tam K, Torres VJ (2018). Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiology Spectre 7. https://doi.org/10.1128/microbiolspec.gpp3-0039-2018
Taylor AR (2013). Methicillin-resistant Staphylococcus aureus infections. Primary Care: Clinics in Office Practice 40:637-654. https://doi.org/10.1016/j.pop.2013.06.002
Taylor SD, Palmer M (2016). The action mechanism of daptomycin. Bioorganic & Medicinal Chemistry 24:6253-6268. https://doi.org/10.1016/j.bmc.2016.05.052
Tegasne C, Kapche GDWF, Mawabo IK, Talla RM, Jouda JB, Happi GM, … Sewald N (2020). Bioguided chemical study of Boswellia dalzielii Hutch. (Burseraceae) for antibacterial agents and a new glucopyranoxylmethoxybenzyle. Natural Products Research 1-10. https://doi.org/10.1080/14786419.2020.1794863
Tittikpina NK, Nana F, Fontanay S, Philippot S, Batawila K, Akpagana K, … Duval RE (2018). Antibacterial activity and cytotoxicity of Pterocarpus erinaceus Poir extracts, fractions and isolated compounds. Journal of Ethnopharmacology 212:200-207. https://doi.org/10.1016/j.jep.2017.10.020
Treffon J, Chaves-Moreno D, Niemann S, Pieper DH, Vogl T, Roth J, Kahl BC (2020). Importance of superoxide dismutases A and M for protection of Staphylococcus aureus in the oxidative stressful environment of cystic fibrosis airways. Cell Microbiology 22:1-14. https://doi.org/10.1111/cmi.13158
Tsiodras S, Gold HS, Sakoulas G, Eliopoulos GM, Wennersten C, Venkataraman L, … Ferraro MJ (2001). Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet 358:207-208. https://doi.org/10.1016/S0140-6736(01)05410-1
Urish KL, Cassat JE (20200. Staphylococcus aureus osteomyelitis: bone, bugs, and surgery. Infection and Immunology 88. https://doi.org/10.1128/IAI.00932-19
Vestergaard M, Frees D, Ingmer H (2019b). Antibiotic resistance and the MRSA problem. Gram-Positive Pathogens 747-765. https://doi.org/10.1128/9781683670131.ch47
Vincenot F, Saleh M, Prévost G (2008). Staphylococcus aureus virulence factors. Revue Francophone des Laboratoires 38:61-69. https://doi.org/10.1016/s1773-035x(08)74868-8
vom Berg J, Vrohlings M, Haller S, Haimovici A, Kulig P, Sledzinska A, Weller M, Becher B (2013). Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell-mediated glioma rejection. Journal of Experimental Medicine 210:2803-2811. https://doi.org/10.1084/jem.20130678
Weiss L, Lansell A, Figueroa J, Suchdev PS, Kirpalani A (20200. Declining prevalence of methicillin-resistant Staphylococcus aureus septic arthritis and osteomyelitis in children: Implications for treatment. Antibiotics 9. https://doi.org/10.3390/antibiotics9030101
Wu Y, Chen J, Sun Y, Dong X, Wang Z, Chen J, Dong G (2020). PGN and LTA from Staphylococcus aureus induced inflammation and decreased lactation through regulating DNA methylation and histone H3 acetylation in bovine mammary epithelial cells. Toxins (Basel) 12. https://doi.org/10.3390/toxins12040238
Yamashita Y, Nagaoka K, Kimura H, Suzuki M, Konno S, Fukumoto T, … Yanagihara K (20190. Efficacy of azithromycin in a mouse pneumonia model against hospital-acquired methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 63:1-12.
Yoong P, Pier GB (2012). Immune-activating properties of panton-valentine leukocidin improve the outcome in a model of methicillin-resistant Staphylococcus aureus pneumonia. Infection and Immunology 80:2894-2904. https://doi.org/10.1128/IAI.06360-11
Yuan W, Yuk HG (2018). Antimicrobial efficacy of Syzygium antisepticum plant extract against Staphylococcus aureus and methicillin-resistant S. aureus and its application potential with cooked chicken. Food Microbiology 72:176-184. https://doi.org/10.1016/j.fm.2017.12.002
Zeouk I, Ouedrhiri W, Sifaoui I, Bazzocchi IL, Piñero JE, Jiménez IA, Lorenzo-Morales J, Bekhti K (2021). Bioguided isolation of active compounds from Rhamnus alaternus against methicillin-resistant Staphylococcus aureus (Mrsa) and panton-valentine leucocidin positive strains (mssa-pvl). Molecules 26:1-13. https://doi.org/10.3390/molecules26144352
Zheng D, Zhang H, Jiang JM, Chen YY, Wan SJ, Lin ZX, Xu HX (20190. Prenylated xanthones and biphenyls from Garcinia esculenta with antistaphylococcal activity. Natural Product Research 35:1-8. https://doi.org/10.1080/14786419.2019.1663511
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ikrame ZEOUK
This work is licensed under a Creative Commons Attribution 4.0 International License.
Papers published in Notulae Scientia Biologicae are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution License.
© Articles by the authors; licensee SMTCT, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.
License:
Open Access Journal - the journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work, due SMTCT supports to increase the visibility, accessibility and reputation of the researchers, regardless of geography and their budgets. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.