Comparison of Pattern Recognition, Artificial Neural Network and Pedotransfer Functions for Estimation of Soil Water Parameters
DOI:
https://doi.org/10.15835/nsb234737Keywords:
pedotransfer functions, kNN approach, soil water content estimation, artificial neural networkAbstract
This paper presents the comparison of three different approaches to estimate soil water content at defined values of soil water potential based on selected parameters of soil solid phase. Forty different sampling locations in northeast of Iran were selected and undisturbed samples were taken to measure the water content at field capacity (FC), -33 kPa, and permanent wilting point (PWP), -1500 kPa. At each location solid particle of each sample including the percentage of sand, silt and clay were measured. Organic carbon percentage and soil texture were also determined for each soil sample at each location. Three different techniques including pattern recognition approach (k nearest neighbour, k-NN), Artificial Neural Network (ANN) and pedotransfer functions (PTF) were used to predict the soil water at each sampling location. Mean square deviation (MSD) and its components, index of agreement (d), root mean square difference (RMSD) and normalized RMSD (RMSDr) were used to evaluate the performance of all the three approaches. Our results showed that k-NN and PTF performed better than ANN in prediction of water content at both FC and PWP matric potential. Various statistics criteria for simulation performance also indicated that between kNN and PTF, the former, predicted water content at PWP more accurate than PTF, however both approach showed a similar accuracy to predict water content at FC.
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Papers published in Notulae Scientia Biologicae are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution License.
© Articles by the authors; licensee SMTCT, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.
License:
Open Access Journal - the journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work, due SMTCT supports to increase the visibility, accessibility and reputation of the researchers, regardless of geography and their budgets. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.