The effect of environmental conditions on the growth and productivity of lingonberry (Vaccinium vitis-idaea L.)

Authors

DOI:

https://doi.org/10.55779/nsb16412149

Keywords:

abiotic stress, altitude, nutrient accumulation, polyphenols, soil, wild lingonberry

Abstract

The growth and productivity of wild lingonberry (Vaccinium vitis-idaea L.) are closely influenced by various environmental factors, including soil composition, climate, light availability, and water levels. This review explores how these conditions and abiotic stress affect lingonberry populations in diverse habitats, from lowland regions to mountainous terrain. Light plays a critical role in flavonoid and anthocyanin synthesis, with solar radiation and photoperiod directly impacting fruit development. Additionally, altitudinal gradients influence the accumulation of polyphenols and vitamin C, while reducing plant height and pollinator activity. Soil types such as cambisols and podzols, often found in subalpine and alpine areas, are favorable for lingonberry growth. Climate factors, particularly winter temperatures and precipitation, significantly affect flowering success, with low temperatures and lack of snow cover negatively impacting fruit production. Forest type and density, including competing vegetation and nutrient availability, further determine the distribution and health of lingonberry populations. This review emphasizes the importance of favorable environmental conditions in promoting the vitality and yield of wild lingonberry, with potential implications for conservation efforts aimed at sustaining its productivity in natural habitats.

Metrics

Metrics Loading ...

References

Åkerström A, Jaakola L, Bång U, Jäderlund A (2010). Effects of latitude-related factors and geographical origin on anthocyanidin concentrations in fruits of Vaccinium myrtillus L. (Bilberries). Journal of Agricultural and Food Chemistry 58(22):11939-11945. https://doi.org/10.1021/jf102407n

Blomhoff R, Andersen R, Arnesen EK, Christensen JJ, Eneroth H, Erkkola M, ... Trolle E (2023). Nordic Nutrition Recommendations integrating environmental aspects: Nordic Council of Ministers. http://dx.doi.org/10.6027/nord2023-003

Chiang C, Olsen JE, Basler D, Bånkestad D, Hoch G (2019). Latitude and weather influences on sunlight quality and the relationship to tree growth. Forests 10(8):610. https://doi.org/10.3390/f10080610

Dincă L, Spârchez G, Dincă M (2014). Romanian’s forest soils gis map and database and their ecological implications. Carpathian Journal of Earth and Environmental Sciences 9(2):133-142.Retrieved 2024 April 10 from: https://www.researchgate.net/publication/287328152_ Romanian's_forest_soils_gis_map_and_database_and_their_ecological_implications

Kardell L (1979). Occurrence and production bilberry, lingonberry, raspberry in Sweden’s forests. Forest Ecology and Management 2:285-298. https://doi.org/10.1016/0378-1127(79)90055-0

Fadaei S, Vaziriyeganeh M, Young M, Sherr I, Zwiazek JJ (2020). Ericoid mycorrhizal fungi enhance salt tolerance in ericaceous plants. Mycorrhiza 30(4):419-429. https://doi.org/10.1007/s00572-020-00958-8

Gustavsson BA (2001). Genetic variation in horticulturally important traits of fifteen wild lingonberry Vaccinium vitis-idaea L. populations. Euphytica 120:173-182. https://doi.org/10.1023/A:1017550609218

Hall IV, Shay JM (1981). The biological flora of Canada. 3. Vaccinium vitis-idaea L. var. minus Lodd. Supplementary account. Canadian Field-Naturalist 95(4):434-464. https://doi.org/10.5962/p.352423

Holloway PS (1983). Studies on vegetative and reproductive growth of lingonberry, Vaccinium vitis-idaea L. PhD Thesis, University of Minnesota, United States. Retrieved 2024 April 16 from: https://www.uaf.edu/afes/places/gbg/research/files/pdfs/1981.-Holloway.PhD-thesis.pdf

Holloway PS, Van Veldhuizen RM, Stushnoff C, Wildung DK (1982). Effects of light intensity on vegetative growth of lingonberries. Canadian Journal of Plant Science 62(4):965-968. https://doi.org/10.4141/cjps82-142

Huld T, Pinedo-Pascua I (2012). Photovoltaic Solar Electricity Potential in European Countries. European Commission, Joint Research Centre, Institute for Energy and Transport, Renewable Energy Unit. https://dx.doi.org/10.1016/j.solener.2006.12.007

Huzum R, Sirbu-Radasanu DS, Iftode SP, Nastuta AV (2017). Assessing potential dietary toxicity of heavy metals in lingonberry from Mǎnǎila open-pit area (Suceava, Romania). E-Health and Bioengineering Conference (EHB), pp 551-554. https://doi.org/10.1109/EHB.2017.7995483

Janick J (2001). Horticultural Reviews Volume 27, Purdue University, United States.

Jovanevi M, Balijagi J, Menkovi N, Šavikin K, Zduni G, Jankovi T, Deki-Ivankovi M (2011). Analysis of phenolic compounds in wild populations of bilberry (Vaccinium myrtillus L.) from Montenegro. Journal of Medicinal Plants Research 5(6): 910-914. Retrieved 2024 July 15 from: http://www.academicjournals.org/JMPR

Kardell L (1980). Occurrence and production of bilberry, lingonberry, and raspberry in Sweden’s forests. Forest Ecology and Management 2:285-298. https://doi.org/10.1016/0378-1127(79)90055-0

Karlsons A, Tomsone S, Lazdne M, Osvalde A (2021). Effect of fertilization on growth of lingonberry (Vaccinium vitis-idaea L.). Agronomy Research 19(2):1039-1051. https://doi.org/10.15159/AR.21.041

Karppinen K, Zoratti L, Nguyenquynh N, Häggman H, Jaakola L (2016). On the developmental and environmental regulation of secondary metabolism in Vaccinium spp. berries. Frontiers in Plant Science 7:655. https://doi.org/10.3389/fpls.2016.00655

Kaškonienė V, Maruška A, Akuņeca I, Stankevičius M, Ragažinskienė O, Bartkuvienė V ... Ugenskienė R (2016). Screening of antioxidant activity and volatile compounds composition of Chamerion angustifolium (L.) Holub ecotypes grown in Lithuania. Natural Product Research 30(12):1373-1381. https://doi.org/10.1080/14786419.2015.1058792

Kowalska K (2021). Lingonberry (Vaccinium vitis-idaea L.) fruit as a source of bioactive compounds with health-promoting effects—a review. International Journal of Molecular Sciences 22(10):5126. https://doi.org/10.3390/ijms22105126

Lehmushovi A, Hiirsalmi H (1973). Cultivation experiment with the cowberry—significance of substrate, liming, fertilization and shade. Annales Agriculturae Fenniae 12(2):95-101.

Martinussen I (2009). Potential of the European Wild Blueberry (Vaccinium myrtillus) for cultivation and industrial exploitation in Norway. Acta Horticulturae 810(810):211-215. https://doi.org/10.17660/ActaHortic.2009.810.28

Mølmann JAB, Dalmannsdottir S, Hykkerud AL, Hytönen T, Samkumar A, Jaakola L (2021). Influence of Arctic light conditions on crop production and quality. Physiologia Plantarum 172(4):1931-1940. https://doi.org/10.1111/ppl.13418

Nestby R, Percival D, Martinussen I, Opstad N, Rohloff J (2010). The European blueberry (Vaccinium myrtillus L.) and the potential for cultivation: A review. European Journal of Plant Science and Biotechnology 5:5-16.

Rieger G, Müller M, Guttenberger H, Bucar F (2008). Influence of altitudinal variation on the content of phenolic compounds in wild populations of Calluna vulgaris, Sambucus nigra, and Vaccinium myrtillus. Journal of Agricultural and Food Chemistry 56(19):9080-9086. https://doi.org/10.1021/jf801104e

Ritchie JC (1955). A natural hybrid in Vaccinium. The structure, performance, and chorology of the cross Vaccinium intermedium Ruthe. New Phytologist 54(1):49-67. https://doi.org/10.1111/j.1469-8137.1955.tb06157.x

Samkumar A, Karppinen K, Dhakal B, Martinussen I, Jaakola L (2022). Insights into sugar metabolism during bilberry (Vaccinium myrtillus L.) fruit development. Physiologia Plantarum 174(2):e13657. https://doi.org/10.1111/ppl.13657

Scărlătescu V, Vasile D, Dincă L (2017). The importance of the Vaccinium species. Research Journal of Agricultural Science 50(1):194-201. Retrieved 2024 May 20 from: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20183382443

Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452. https://doi.org/10.3390/molecules24132452

Smith DW (1962). Ecological studies of Vaccinium species in Alberta. Canadian Journal of Plant Science 42:82-90. https://doi.org/10.4141/cjps62-011

Stănescu V (1979). Dendrologie. Editura Didactică şi Pedagogică, Bucureşti.

Stănilă AL, Dumitru M (2016). Soil zones in Romania and pedogenetic processes. Agriculture and Agricultural Science Procedia 10:135-139. https://doi.org/10.1016/j.aaspro.2016.09.042

Ștefănescu BE, Călinoiu LF, Ranga F, Fetea F, Mocan A, Vodnar DC, Crișan G (2020). Chemical composition and biological activities of the nord-west Romanian wild bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) leaves. Antioxidants 9(6):495. https://doi.org/10.3390/antiox9060495

Uleberg E, Rohloff J, Jaakola L, Trôst K, Junttila O, Häggman H, Martinussen I (2012). Effects of temperature and photoperiod on yield and chemical composition of northern and southern clones of bilberry (Vaccinium myrtillus L.). Journal of Agricultural and Food Chemistry 60(42):10406-10414. https://doi.org/10.1021/jf302924m

Urbonaviciene D, Bobinaite R, Viskelis P, Viskelis J, Petruskevicius A, Puzeryte V ... Bobinas C (2023). Nutritional and physicochemical properties of wild lingonberry (Vaccinium vitis-idaea L.)—Effects of geographic origin. Molecules 28(12):4589. https://doi.org/10.3390/molecules28124589

Viereck LA, Schandelmeier LA (1980). Effects of fire in Alaska and adjacent Canada-a literature review. U.S. Department of the Interior, Bureau of Land Mangement, Alaska State Office. Retrieved 2024 September 10 from: https://www.blm.gov/sites/default/files/documents/files/Library_Alaska_TechnicalReport06.pdf

Vilkickyte G, Motiekaityte V, Vainoriene R, Raudone L (2022). Promising cultivars and intraspecific taxa of lingonberries (Vaccinium vitis-idaea L.): Profiling of phenolics and triterpenoids. Journal of Food Composition and Analysis 114:104796. https://doi.org/10.1016/j.jfca.2022.104796

Vilkickyte G, Raudone L (2021). Phenological and geographical effects on phenolic and triterpenoid content in Vaccinium vitis-idaea L. leaves. Plants 10(10):1986. https://doi.org/10.3390/plants10101986

Vrancheva R, Ivanov I, Dincheva I, Badjakov I, Pavlov A (2021). Triterpenoids and other non-polar compounds in leaves of wild and cultivated Vaccinium species. Plants 10(1):1-16. https://doi.org/10.3390/plants10010094

Zheng J, Huang C, Yang B, Kallio H, Liu P, Ou S (2019). Regulation of phytochemicals in fruits and berries by environmental variation—Sugars and organic acids. Journal of Food Biochemistry 43(6):e12642. https://doi.org/10.1111/jfbc.12642

Zoratti L, Palmieri L, Jaakola L, Häggman H (2015). Genetic diversity and population structure of an important wild berry crop. AoB Plants 7:1-10. https://doi.org/10.1093/aobpla/plv117

Downloads

Published

2024-12-02

How to Cite

APARASCHIVE, C. M., TRUTA, A. M., MORAR, I. M., IORAS, F., BOSCAIU, M., & SESTRAS, A. F. (2024). The effect of environmental conditions on the growth and productivity of lingonberry (Vaccinium vitis-idaea L.). Notulae Scientia Biologicae, 16(4), 12149. https://doi.org/10.55779/nsb16412149

Issue

Section

Review articles
CITATION
DOI: 10.55779/nsb16412149

Most read articles by the same author(s)