GC-MS based metabolite profiling and antioxidant activity of solvent extracts of Allium chinense G Don leaves

  • Thejanuo RHETSO Bangalore University, Department of Botany, Jnana Bharathi Campus, Bengaluru-560056 (IN)
  • Roopa M. SESHADRI Bangalore University, Department of Botany, Jnana Bharathi Campus, Bengaluru-560056 (IN)
  • Shubharani RAMNATH Bangalore University, Department of Botany, Jnana Bharathi Campus, Bengaluru-560056 (IN)
  • Sivaram VENKATARAMEGOWDA Bangalore University, Department of Botany, Jnana Bharathi Campus, Bengaluru-560056 (IN)
Keywords: Allium chinense, bioactive compounds, metabolite profile, scavenging activity


Allium chinense, a main source of “Xiebai” drug in Chinese traditional medicine and commonly known as Ganoderma lucidum belongs to the family Amaryllidaceae. The main focus of this research was to quantify the secondary metabolites, antioxidant potential and study the GC- MS based metabolite profile of different solvent leaf extracts of A. chinense. The reports on the bioactive compounds of A. chinense leaves are still insufficient compared to the bulb; hence this study was carried out to understand the bioactive compounds present in A. chinense leaves using different solvents of varying polarity. Our investigation showed that the ethanol extract contained the highest saponin, flavonoid, phenol, and DPPH scavenging activity. Further, metabolite profiling revealed a total of forty-eight compounds, indicating a diverse range of phytochemicals present in the four extracts. The highest number of compounds were observed in ethanol extract (15) followed by chloroform extract (13), petroleum ether extract (11) and methanol extract (9). Some of the major compounds identified in the four solvents are octacosane (27.11%), heptadecane (19.66%), eicosane (18.51%), ethyl palmitate (18.50%), phytol (17.68%) and phytol acetate (17.30%). In conclusion, this study highlights that A. chinense leaf extracts contain high saponins, terpenes and alkanes which could be a potential source of a new beneficial drug.


Metrics Loading ...


Abubacker MN, Devi PK (2015). In vitro antifungal potentials of bioactive compounds heptadecane, 9- hexyl and ethyl iso-allocholate isolated from Lepidagathis cristata Willd. (Acanthaceae) leaf. British Biomedical Bulletin 3(3):336-343.

Adnan M, Chy NU, Mostafa Kamal ATM, Azad MOK, Paul A, Uddin SB, ... Cho DH (2019). Investigation of the biological activities and characterization of bioactive constituents of Ophiorrhiza rugosa var. prostrata (D. Don) & Mondal leaves through in vivo, in vitro, and in silico approaches. Molecules 24(7):1367. https://doi.org/10.3390/molecules24071367

Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R and Koirala N (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants 8(4):96. https://doi.org/10.3390/plants8040096

Bakr RO, El-Naa MM, Zaghloul SS, Omar MM (2017). Profile of bioactive compounds in Nymphaea alba L. leaves growing in Egypt: Hepatoprotective, antioxidant and anti-inflammatory activity. BMC Complementary Medicine and Therapies 17:52. https://doi.org/10.1186/s12906-017-1561-2

Chu C, Cui T, Li S Zhan R, Gao Y (2018). Structure and activity of a new sapogenin from Chlorophytum laxum R. Br. Chemical Research in Chinese Universities 34(5):732-735. https://doi.org/10.1007/s40242-018-8114-1

Chuah XQ, Okechukwu PN, Amini F, Teo SS (2018). Eicosane, pentadecane and palmitic acid: The effects in in vitro wound healing studies. Asian Pacific Journal of Tropical Medicine 8(10):490-499. https://doi.org/10.4103/2221-1691.244158

Ghazali N, Abdullah NA (2014). GC-MS analysis of some bioactive components in the root extract of Linn Ixora coccinea Linn. International Journal of Pharma and Bio Sciences 5(3):197-203.

Gnanavel V, Saral MA (2013). GC-MS analysis of petroleum ether and ethanol leaf extracts from Abrus precatorius Linn. International Journal of Pharm and Bio Sciences 4(3):37-44.

Godara P, Dulara BK, Barwer NB, Chaudhary NS (2019). Comparative GC-MS analysis of bioactive phytochemicals from different plant parts and callus of Leptadenia reticulata Wight and Arn. Pharmacognosy Journal 11(1):129-140 http://dx.doi.org/10.5530/pj.2019.1.22

Hosoki T, Hiura H, Hamada M (1985). Breaking bud dormancy in corms, tubers, and trees with sulfur-containing compounds HortScience 20: 290-291.

Hussain G, Rasul A, Anwar H, Aziz N, Razzaq A, Wei Wei, … Li X (2018). Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. International Journal of Biological Sciences 14(3):341-357 https://doi.org/10.7150/ijbs.23247

Islam MT, Ali ES, Uddin SJ, Shaw S, Islam MA, Ahmed MI, … Atanasov AG (2018). Phytol: A review of biomedical activities. Food and Chemical Toxicology 121:82-94. https://doi.org/10.1016/j.fct.2018.08.032

Khan AN, Bhat I (2018). Extraction, qualitative and quantitative determination of secondary metabolites of Rumex nepalensis Roots. Journal of Drug Delivery and Therapeutics 8(6):97-100. https://doi.org/10.22270/jddt.v8i6-s.2092

Kim DH, Park MH, Choi YJ, Chung KW, Park CH, Jang EJ ... Chung HY (2013). Molecular study of dietary heptadecane for the anti-inflammatory modulation of NF-kB in the aged kidney. PLoS One 8(3):1-10. https://doi.org/10.1371/journal.pone.0059316

Kretovich UL (2005). Principles of plant biochemistry. Permagon, Oxford Press. Journal of Food Science 54:254-260.

Kubota N, Matthews MA, Takahagi T, Kliewer WM (2000). Budbreak with garlic preparations: Effects of garlic preparations and of calcium and hydrogen cyanamides on budbreak of grapevines grown in greenhouses. American Journal of Enology and Viticulture 51:409-414.

Le AV, Parks SE, Nguyen MH, Roach PD (2018). Improving the vanillin-sulphuric acid method for quantifying total saponins. Technologies 6(3):84 . https://doi.org/10.3390/technologies6030084

Lefahal M, Zaabat N, Ayad R, Makhloufi EH, Djarri L, Benahmed M, … Akkal S (2018). In vitro assessment of total phenolic and flavonoid contents, antioxidant and photoprotective activities of crude methanolic extract of aerial parts of Capnophyllum Peregrinum (L.) Lange (Apiaceae) growing in Algeria. Medicines 5(2):26. https://doi.org/10.3390/medicines5020026

Lim TK (2015). Edible medicinal and non-medicinal plants, Allium chinense. 9 Modified Stems, Roots, Bulbs Springer, Dordrecht pp 204-209.

Lin YP, Lin LY, Yeh HY, Chuang CH, Tseng SW, Yen YH (2016). Antihyperlipidemic activity of Allium chinense bulbs. Journal of Food and Drug Analysis 24(3):516-526. https://doi.org/10.1016/j.jfda.2016.01.010

Liu XC, Lu XN, Liu QZ, Liu ZL (2014). Evaluation of insecticidal activity of the essential oil of Allium chinense G. Don and its major constituents against Liposcelis bostrychophila Badonnel. Journal of Asia-Pacific Entomology 17(4):853-856. https://doi.org/10.1016/j.aspen.2014.08.007

Liu Y, Wang M, Liu K, Qiu P, Zhang S, Lu Y, … Tang H (2018). New steroidal saponins from the rhizomes of Paris vietnamensis and their cytotoxicity. Molecules 23(3):588. https://doi.org/10.3390/molecules23030588

Lobo V, Patil A, Phatak A, Chandra N (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews 4(8):118-126. https://dx.doi.org/10.4103%2F0973-7847.70902

Merculieff1 Z, Ramnath S, Sankoli SM, Venkataramegowda S, Murthy, GS, Ceballos RM (2014). Phytochemical, antioxidant and antibacterial potential of Elaeagnus kologa (Schlecht.) leaf. Asian Pacific Journal of Tropical Medicine 4(9):687-691. https://doi.org/10.1016/S1995-7645(14)60295-9

Mujeeb F, Bajpai P, Pathak N (2014). Phytochemical evaluation, antimicrobial activity and determination of bioactive components from leaves of Aegle marmelos. Biomed Research International https://doi.org/10.1155/2014/497606

Nandhini US, Sangareshwari S, Lata K (2015). Gas chromatography-mass spectrometry analysis of bioactive constituents from the marine Streptomyces. Asian Journal of Pharmaceutical and Clinical Research 8(2):244-246.

Paudel MR, Chand MB, Pant B, Pant B (2019). Assessment of antioxidant and cytotoxic activities of extracts of Dendrobium crepidatum. Biomolecules 9(9):478. https://doi.org/10.3390/biom9090478

Pereira DM, Valentao P, Pereira JA, Andrade PB (2009). Phenolics: from chemistry to biology. Molecules 14(6):2202-2211 https://doi.org/10.3390/molecules14062202

Pino JA, Fuentes V, Correa MT (2001). Volatile constituents of Chinese chive (Allium tuberosum Rottl. ex Sprengel) and rakkyo (Allium chinense G. Don). Journal of Agricultural and Food Chemistry 49(3):1328-1330. https://doi.org/10.1021/jf9907034

Qiu T, Wu D, Yang L, Ye H, Wang Q, Cao Z, Tang K (2018). Exploring the mechanism of flavonoids through systematic bioinformatics analysis. Frontiers in Pharmacology 9:918. https://doi.org/10.3389/fphar.2018.00918

Safari M, Ahmady-Asbchin S (2019): Evaluation of antioxidant and antibacterial activities of methanolic extract of medlar (Mespilus germanica L.) leaves. Biotechnology and Biotechnological Equipment 33:372-378. https://doi.org/10.1080/13102818.2019.1577701

Schulz S, Yildizhan S, Loon JJAV (2011). The Biosynthesis of hexahydrofarnesylacetone in the butterfly Pieris brassicae. Journal of Chemical Ecology 37(4):360-363. https://doi.org/10.1007/s10886-011-9939-y

Sobolewska D, Galanty A, Grabowska K, Makowska-Was J, Wrobel-Biedrawa D, Podolak I (2020). Saponins as cytotoxic agents: an update (2010–2018). Part I-steroidal saponins. Phytochemistry Reviews 19:139-189. https://doi.org/10.1007/s11101-020-09661-0

Tan PV (2018). The Determination of total alkaloid, polyphenol, flavonoid and saponin contents of Pogang gan (Curcuma sp.). International Journal of Biology 10(4):42-47. https://doi.org/10.5539/ijb.v10n4p42

Thawabteh A, Lelario F, Scrano L, Bufo SA, Nowak S, Behrens M, … Karaman R (2019). Bitterless guaifenesin prodrugs-design, synthesis, characterization, in vitro kinetics, and bitterness studies. Chemical Biology and Drug Design 93(3):262-271. https://doi.org/10.1111/cbdd.13409

Tyagi T, Agarwal M (2017). Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) Solms. Journal of Pharmacognosy and Phytochemistry 6(1):195-206.

U.S. Department of Agriculture, Agricultural Research Service (1992-2016). Dr. Duke’s Phytochemical and Ethnobotanical Databases. Retrieved 2016 Mar 23 from http://phytochem.nal.usda.gov/

Varsha KK, Devendra L, Shilpa G, Priya S, Pandey A, Nampoothiri KM (2015). 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. International Journal of Food Microbiology 211:44-50. https://doi.org/10.1016/j.ijfoodmicro.2015.06.025

Vasundhara M, Nethravathi M, Priyanka R, Marappa N, Gujaran SR (2017). Antioxidant potential of Laurus nobilis L. essential oil. Agricultural Research Journal 54(4):495-499. http://dx.doi.org/10.5958/2395-146X.2017.00095.3

Wang B, Ma MP, Diao QY, Tu Y (2019). Saponin-induced shifts in the rumen microbiome and metabolome of young cattle. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2019.00356

Wang J, Song H, Wu X, Zhang S, Gao X, Li F, … Chen Q (2018). Steroidal saponins from Vernonia amygdalina Del. and their biological activity. Molecules 23(3):579. https://doi.org/10.3390/molecules23030579

Wang TY, Li Q, Bi KS (2017). Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian Journal of Pharmaceutical Sciences 13:12-23. https://doi.org/10.1016/j.ajps.2017.08.004

Yang B, Xu B, Zhao H, Wang YB, Zhang J, Li CW, … Cao F (2018). Dioscin protects against coronary heart disease by reducing oxidative stress and inflammation via Sirt1/Nrf2 and p38 MAPK pathways. Molecular Medicine Reports 18(1):973-980. https://doi.org/10.3892/mmr.2018.9024

Yao ZH, Qin ZF, Dai Y, Yao XS (2016). Phytochemistry and pharmacology of Allii macrostemonis Bulbus, a traditional Chinese medicine. Chinese Journal of Natural Medicines 14(7):481-498. https://doi.org/10.1016/s1875-5364(16)30058-9

How to Cite
RHETSO, T., SESHADRI, R. M., RAMNATH, S., & VENKATARAMEGOWDA, S. (2021). GC-MS based metabolite profiling and antioxidant activity of solvent extracts of Allium chinense G Don leaves. Notulae Scientia Biologicae, 13(2), 10791. https://doi.org/10.15835/nsb13210791
Research articles
DOI: 10.15835/nsb13210791