Utilizing Genetic Resources and Precision Agriculture to Enhance Resistance to Biotic and Abiotic Stress in Watermelon


  • Mihail KANTOR Claflin University, 400 Magnolia Street, Orangeburg, SC (US)
  • Amnon LEVI USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC (US)




citrullus; resistance; next generation sequencing (NGS) technologies; food security; precision agriculture


Originally from Africa, watermelon is a staple crop in South Carolina and rich source of important phytochemicals that promote human health. As a result of many years of domestication and selection for desired fruit quality, modern watermelon cultivars are susceptible to biotic and abiotic stress. The present review discusses how genetic selection and breeding combined with geospatial technologies (precision agriculture) may help enhance watermelon varieties for resistance to biotic and abiotic stress. Gene loci identified and selected in undomesticated watermelon accessions are responsible for resistance to diseases, pests and abiotic stress. Vegetable breeding programs use traditional breeding methodologies and genomic tools to introduce gene loci conferring biotic or abiotic resistance into the genome background of elite watermelon cultivars. This continuous approach of collecting, evaluating and identifying useful genetic material is valuable for enhancing genetic diversity and tolerance and combined with precision agriculture could increase food security in the Southeast.


Metrics Loading ...


Alexandratos N, Bruinsma J (2012). World agriculture towards 2030/2050: the 2012 revision. ESA Working Paper No. 12-03. Rome, FAO.

Araújo JD, Souza RDC (1988). Avaliação de germoplasma de melancia com provável resistência mecânica ao vírus WMV-1 em Petrolina (PE). [Evaluation of watermelon germplasm with probable mechanical resistance to the WMV-1 virus in Petrolina (PE)]. Horticultura Brasileira 6:45.

Ayyub CM, Ali, M, Shaheen M R, Qadri RWK, Khan I, Jahangi MM, Zain M (2015). Enhancing the salt tolerance potential of watermelon (Citrullus lanatus) by exogenous application of salicylic acid. American Journal of Plant Sciences 6(19):3267.

Balafoutis A, Beck B, Fountas S, Vangeyte J, Wal TVD, Soto, I, Eory V (2017). Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 9(8):1339.

Ben-Naim Y, Cohen Y (2015). Inheritance of resistance to powdery mildew race 1W in watermelon. Phytopathology 105(11):1446-1457.

Brazelton JN, Pfeufer EE, Sweat TA, McSpadden Gardener BB, Coenen C (2008). 2,4-Diacetylphloroglucinol alters plant root development. Molecular Plant-Microbe Interactions 21:1349-1358.

Camargo Filho WP, Camargo FP (2017). A quick review of the production and commercialization of the main vegetables in Brazil and the world from 1970 to 2015. Horticultura Brasileira 35(2):160-166.

Castle MH, Lubben BD, Luck JD (2016). Factors influencing the adoption of precision agriculture technologies by Nebraska producers. Lincoln, NE, USA: University of Nebraska-Lincoln Digital Commons. Retrieved 8/20/17 from http: // digitalcommons.unl.edu /ageconworkpap/49/.

Chen W, Hasegawa DK, Kaur N, Kliot A, Pinheiro PV, Luan J, Xu Y (2016). The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biology 14(1):110.

Cheng W, Huang Y, Meng C, Zhang N, Zeng H, Ren J, Sun Y (2015). Effect of exogenous 24-epibrassinolide on salt resistance of watermelon (Citrullus lanatus L.) under salinity stress. In Proceedings of the 5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) (pp 68-75).

Coffey JL, Simmons AM, Shepard BM, Tadmor Y, Levi A (2015). Potential sources of whitefly (Hemiptera: Aleyrodidae) resistance in desert watermelon (Citrullus colocynthis) germplasm. HortScience 50(1):13-17.

Cooley H, Donnelly K, Phurisamban R, Subramanian M (2015). Impacts of California’s ongoing drought: agriculture. Pacific Institute: Oakland, CA, USA. Retrieved 8/20/ 17 from http://pacinst.org/app/uploads/2015/08/ImpactsOnCaliforniaDrought-Ag.pdf.

Corwin DL, Lesch SM (2003). Application of soil electrical conductivity to precision agriculture. Agronomy Journal 95(3):455-471.

Dane F, Hawkins LK, Norton JD, Kwon YS, Om YH (1998). New resistance to race 2 of Fusarium oxysporum f.sp. niveum in watermelon. Report-Cucurbit Genetics Cooperative 21:37-39.

Davis AR, Levi A, Tetteh A, Wehner T, Russo V, Pitrat M (2007). Evaluation of watermelon and related species for resistance to race 1W Powdery Mildew. Journal of the American Society for Horticultural Sciences 132(6):790-795.

Delany IR, Walsh UF, Ross I, Fenton AM, Corkery DM, O’Gara F (2001). Enhancing the biocontrol efficacy of Pseudomonas fluorescens F113 by altering the regulation and production of 2,4- diacetylphloroglucinol. Plant and Soil 232:195-205.

De Leij FAAM, Dixon-Hardy JE, Lynch JM (2002). Effect of 2,4-diacetylphloroglucinol-producing and non-producing strains of Pseudomonas fluorescens on root development of pea seedlings in three different soil types and its effect on nodulation by Rhizobium. Biology and Fertility of Soils 35:114-121.

De Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003). Effect of 2,4-diacetylphloroglucinol on Pythium: Cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966-975.

Ess R, Morgan T, Parsons D, Medlin C (2001). Implementing site specific management: sprayer technology, controlling application rate and droplet size distribution on the go. Purdue University, (SSM-5-W). Retrieved 8/20/17 from http://www.ces.purdue.edu/extmedia/AE/ SSM-5-W.pdf.

Evans RG, Sadler EJ (2008). Methods and technologies to improve efficiency of water use. Water Resources Research 44(7).

Gebbers R, Adamchuk VI (2010). Precision agriculture and food security. Science 327(5967):828-831.

Grisso RD, Alley MM, Holshouser DL, Thomason WE (2009). Precision farming tools: Soil electrical conductivity. Virginia Cooperative Extension, Virginia Tech, and Virginia State University. Publication 442-508. Retrieved 8/18/17 from https://pubs.ext.vt.edu/442/442-508/442-508.html.

Guner N (2004). Papaya ringspot virus watermelon strain and Zucchini yellow mosaic virus resistance in watermelon. PhD Dissertation, Department of Horticultural Science, North Carolina State University, Raleigh pp 257.

Guner N, Wehner TC (2008). Overview of potyvirus resistance in watermelon, Proc. IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae pp 445-451.

Guo S et al. (2013). The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genetics 45(1):51-58.

Everts KL, Himmelstein JC (2015). Fusarium wilt of watermelon: Towards sustainable management of a re-emerging plant disease. Crop Protection 73:93-99.

Fountas S, Anastasiou E, Xanthopoulos G, Lambrinos G, Manolopoulou E, Apostolidou S, Balafoutis A (2015). Precision agriculture in watermelons. In: Precision Agriculture ‘15 . Wageningen Academic Publishers pp 207-216.

Harris KR, Ling K, Levi A, Wechter WP (2010). Identification and utility of markers linked to the zucchini yellow mosaic virus resistance gene in watermelon. Plant and Animal Genome Conference Proceedings January 9-13, 2010, P-215.

Khosla R, Fleming K, Delgado JA, Shaver TM, Westfall DG (2002). Use of site-specific management zones to improve nitrogen management for precision agriculture. Journal of Soil and Water Conservation 57(6):513-518.

Kotuby-Amacher J, Koenig R, Kitchen B (2000). Salinity and plant tolerance. Electronic Publication AG-SO-03, Utah State University Extension, Logan Retrieved 8/18/17 from https://digitalcommons. usu.edu/cgi/viewcontent.cgi?article=1042&context=extension_histall.

Kousik CS, Ikerd J, Wechter WP, Harrison H, Levi A (2012). Resistance to Phytophthora fruit rot of watermelon caused by Phytophthora capsici in U.S. Plant Introductions. HortScience 47:1682-1689.

Kousik CS, Ling KS, Adkins ST, Webster CG, Turechek W (2014). Phytophthora fruit rot-resistant watermelon germplasm lines: USVL489-PFR, USVL782-PFR, USVL203-PFR, and USVL020-PFR. HortScience 49:101-104.

Levi A, Thomas CE, Keinath AP, Wehner TC (2001). Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genetic Resources and Crop Evolution 48(6):559-566.

Levi A, Thies JA, Wechter WP, Harrison HF, Simmons AM, Reddy UK Fei Z (2013). High frequency oligonucleotides: targeting active gene (HFO-TAG) markers revealed wide genetic diversity among Citrullus spp. accessions useful for enhancing disease or pest resistance in watermelon cultivars. Genetic Resources and Crop Evolution 60(2):427-440.

Levi A, Thies JA, Wechter PW, Farnham M, Weng Y, Hassell R (2014). USVL-360, a novel watermelon tetraploid germplasm line. HortScience 49(3):354-357.

Levi A, Coffey J, Massey L, Guner N, Oren E, Tadmor Y, Ling K (2016a). Resistance to papaya ringspot virus-watermelon strain (PRSV-W) in the desert watermelon Citrullus colocynthis. HortScience 51(1):4-7.

Levi A, Harris-Shultz KR, Ling KS (2016b). USVL-370, a Zucchini yellow mosaic virus-resistant watermelon breeding line. HortScience 51(1):107-109.

Levi A, Jarret R, Kousik S, Wechter WP, Nimmakayala P, Reddy U (2017). Genetics and genomics of the Cucurbitacae. In: Grumet R, Katzir N, Garcia-Mas J (Eds). New York: Springer Intl Pub AG pp 229-240.

Levi A, Hernandez L, Thimmapuram J, Donthu R, Wright C, Ali C, Wechter WP, Reddy U, Mikel M (2011). Sequencing the genome of the heirloom watermelon cultivar Charleston Gray. XX Plant and Animal Genome Conference, San Diego pp P047.

Ling K, Harris KR, Meyer JD, Levi A, Guner N, Wehner TC, Bendahmane A, Havey MJ (2009). Non-synonymous single nucleotide polymorphisms in the watermelon eIF4E gene are closely associated with resistance to zucchini yellow mosaic virus. Theoretical and Applied Genetics 120:191-200.

Ling N, Zhang W, Wang D, Mao J, Huang Q, Guo S, Shen Q (2013). Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PLoS One 8(5):e63383.

Liu RH (2013). Health-promoting components of fruits and vegetables in the diet. Advances in Nutrition: An International Review Journal 4(3):384S-392S.

Martyn RD (2014). Fusarium wilt of watermelon: 120 Years of Research. Horticultural Reviews 42:349-442.

McLoud PR, Gronwald R, Kuykendall H (2007). Precision agriculture: NRCS support for emerging technologies. Agronomy Technical Note (1).

Meyer SL, Everts KL, Gardener BM, Masler EP, Abdelnabby HM, Skantar AM (2016). Assessment of DAPG-producing Pseudomonas fluorescens for management of Meloidogyne incognita and Fusarium oxysporum on watermelon. Journal of Nematology 48(1):43.

Morris KA, Langston DB, Dickson DW, Davis RF, Timper P, Noe JP (2015). Efficacy of fluensulfone in a tomato-cucumber double cropping system. Journal of Nematology 47:310-315.

Nascimento IR, dos Santos LB, dos Reis Figueira A, dos Santos GR, de Souza Aguiar R W, Malu, WR, de Oliveira GIS (2011). Identificação molecular de espécies de vírus e reação fenotípica de famílias de melancia a um isolado do vírus da mancha anelar do mamoeiro, estirpe melancia [Molecular identification of virus species and phenotypic reaction of watermelon families to an isolate of the papaya stain virus, watermelon strain] (Pappaya ringspot virus–strain watermelon-PRSV-W). Journal of Biotechnology and Biodiversity 2(1).

Netzer D, Martyn RD (1989). PI-296341, a source of resistance in watermelon to race 2 of Fusarium oxysporum f. sp. niveum. Plant Disease 73(6):518.

Nimmakayala P, Tomason YR, Jeong J, Ponniah SK, Karunathilake A, Levi A, Peruma R, Reddy UK (2010). Genetic reticulation and interrelationships among Citrullus species as revealed by joint analysis of shared AFLPs and species-specific SSR alleles. Plant Genetic Resources 8(1):16-25.

Nimmakayala P, Levi A, Abburi L, Abburi VL, Tomason YR, Saminathan T, Vajja VG, Malkaram S, Reddy R, Wehner TC, Reddy UK (2014). Single nucleotide polymorphisms generated by genotyping by sequencing used to characterize genome-wide diversity, linkage disequilibrium and selection sweep for worldwide cultivated watermelon. BMC Genomics 15(1):767.

Reddy UK, Abburi L, Abburi VL, Saminathan T, Cantrell R, Vajja VG, Reddy R, Tomason YR, Levi A, Wehner TC, Nimmakayala P (2014a). A genome-wide scan of selective sweeps and association mapping of fruit traits using microsatellite markers in watermelon. Journal of Heredity 106(2):166-176.

Reddy UK, Nimmakayala P, Levi A, Abburi VL, Saminathan T, Tomason YR, Vajja G, Reddy R, Abbur L, Wehner TC, Ronin Y, Korol A (2014b). High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon. G3: Genes Genomes Genetics 4(11):2219-2230.

Robert PC (2002). Precision agriculture: a challenge for crop nutrition management. Plant and Soil 247(1):143-149.

Schwarz J, Herold L, Pölling B (2011). Typology of PF Technologies; FP7 Project Future Farm. Retrieved 8/15/17 from http://www.futurefarm. eu/ .

Shockley J, Dillon CR, Stombaugh T, Shearer S (2012). Whole farm analysis of automatic section control for agricultural machinery. Precision Agriculture 13(4):411-420.

Simmons AM, Levi A (2002). Source of whitefly (homoptera: aleyrodidae) resistance in Citrullus spp. for the improvement of cultivated watermelon. Hortscience 37:581-584.

Simmons AM, Kousik CS, Levi A (2010). Combining reflective mulch and host plant resistance for sweetpotato whitefly (Hemiptera: Aleyrodidae) management in watermelon. Crop Protection 29(8):898-902.

Simpson CR, King S, Nelson SD, Jifon J, Schuster G, Volder A (2015). Salinity Evaluation for watermelon (Citrullus lanatus) grafted with different rootstocks. Subtropical Agriculture and Environments 66:1-6.

Smith CM, Dhuyvetter KC, Kastens TL, Kastens DL, Smith LM (2013). Economics of precision agricultural technologies across the Great Plains. Journal of the ASFMRA 185-206.

Srinivasan A (2006). Handbook of precision agriculture. Principles and applications (No. LC-0400). Food Products Press: New York.

Stafford JV (2006). The role of technology in the emergence and current status of precision agriculture. Handbook of Precision Agriculture. Food Products Press: New York pp 19-56.

Strange EB, Guner N, Pesic-Van Esbroeck Z, Wehner TC (2002). Screening the watermelon germplasm collection for resistance to Papaya Ringspot Virus Type-W. Crop Science 42(4):1324-1330.

Tannin-Spitz T, Bergman M, Grossman S (2007). Cucurbitacin glucosides: Antioxidant and free-radical scavenging activities. Biochemical and Biophysical Research Communications 364(1):181-186.

Tetteh AY, Wehner TC, Davis AR (2013). Inheritance of resistance to the new race of powdery mildew in watermelon. Crop Science 53(3):880-887.

Thies JA, Levi A (2003). Resistance of watermelon germplasm to the peanut root-knot nematode. HortScience 38:1417-1421.

Thies JA, Levi A (2007). Characterization of watermelon (Citrullus lanatus var. citroides) germplasm for resistance to root-knot nematodes. HortScience 42:1530-1533.

Thies JA, Ariss JJ, Hassell RL, Olson S, Kousik CS, Levi A (2010). Grafting for management of southern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Disease 94:1195-1199.

Thies JA, Ariss JJ, Hassell RL, Buckner S, Levi A (2015a). Accessions of Citrullus lanatus var. citroides are valuable rootstocks for grafted watermelon in fields infested with root-knot nematodes. HortScience 50:4-8.

Thies JA, Buckner S, Horry M, Hassell R, Levi A (2015b). Influence of Citrullus lanatus var. citroides rootstocks and their F1 hybrids on yield and response to root-knot nematode, Meloidogyne incognita, in grafted watermelon. HortScience 50:9-12.

Thies JA, Levi A, Ariss JJ, Hassell RL (2015c). RKVL-318, a root-knot nematode-resistant watermelon line as rootstock for grafted watermelon. HortScience 50(1):141-142.

Thies JA, Ariss JJ, Kousik CS, Hassell RL, Levi A (2016). Resistance to southern root-knot nematode (Meloidogyne incognita) in wild watermelon (Citrullus lanatus var. citroides). Journal of Nematology 48(1):14.

Togni PH, Laumann RA, Medeiros MA, Sujii ER (2010). Odour masking of tomato volatiles by coriander volatiles in host plant selection of Bemisia tabaci biotype B. Entomologia Experimentalis et Applicata 136(2):164-173.

Tomasiewicz DJ, Hingley L, Derdall E, Vestre B (2013). Variable rate irrigation: the next big thing in irrigated agriculture? In Proceedings of the Soils and Crops Conference, Saskatchewan, SK, Canada.

United Nations, Department of Economic and Social Affairs, Population Division 2015 (2015). World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241.

United States Agency for International Development. Retrieved 8/15/17 from https://www.usaid.gov/somalia/agriculture-and-food-security.

Wechter WP, Kousik CS, McMillan ML Levi A (2012). Identification of resistance to Fusarium oxysporum f. sp. niveum race 2 in Citrullus lanatus var. citroides plant introductions. HortScience 47:334-338.

Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Blouin Bankhead S, Allende Molar R, Bonsall RF, Mavrodi DV, Thomashow LS (2007). Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biology 9:4-20.

Zhang H, Gong G, Guo S, Ren Y, Xu Y, Ling KS (2011). Screening the USDA watermelon germplasm collection for drought tolerance at the seedling stage. HortScience 46(9):1245-1248.

Zhou TT, Li CY, Chen D, Wu K, Shen QR, Shen B (2014). phlF- mutant of Pseudomonas fluorescens J2 improved 2,4-DAPG biosynthesis and biocontrol efficacy against tomato bacterial wilt. Biological Control 78:1-8.




How to Cite

KANTOR, M., & LEVI, A. (2018). Utilizing Genetic Resources and Precision Agriculture to Enhance Resistance to Biotic and Abiotic Stress in Watermelon. Notulae Scientia Biologicae, 10(1), 1–7. https://doi.org/10.15835/nsb10110242



Review articles
DOI: 10.15835/nsb10110242