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Abstract 
The aim of the present study was to optimize various cultural conditions for the production of antibacterial metabolites by 

coelicoflavus BC 01 isolated from mangrove soil, Visakhapatnam, Andhra Pradesh, India. The effect of various factors su

nitrogen sources, different concentrations of NaCl and K

metabolites production were studied. The production of antibacterial metabolites by the isolate 

influenced by the cultural conditions. Glucose (1.2%) and soya bean meal (1%) seemed to be the best carbon and nitrogen sourc
respectively, followed by NaCl (1%) and K
temperature of 30 °C, with pH 7.2, at 160 rpm for 96 hrs. These optimized parameters can be further useful to design a fermen

medium to achieve maximum yield of antibacterial metabolites from 
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Introduction 

Actinomycetes are the most widely distributed group of 
microorganisms in natural and manmade environment. They 
play an important role in producing secondary metabolites of 
novel structures, which includes antibacterial, antifungal, 
antitumor, antiprotozoic
enzymes etc. (Priya 
antibiotics are isolated from actinomycetes and among them, 
two thirds are produced from 
number of clinically important an
drugs against common diseases, have been derived from 
Streptomyces (Bibb, 2005). 
about 75% of commercially and medically useful antibiotics 
(Usha et al., 2013). 
industrially important microorganisms because of their ability to 
produce different kinds of novel secondary metabolites (Solanki 
et al., 2005). 

The production of antimicrobial metabolites depends on the 
nutritional and physiological 
Hence, designing an appropriate culture medium is very 
important, as the medium composition can significantly affect 
the yield of the antimicrobial metabolites. Media components 
and their optimum levels are essential for t
antimicrobial metabolites by microorganisms. The production 
of antibiotics through fermentation is influenced by the 
concentration and type of carbon, nitrogen, phosphorous 
sources, as well as trace elements and also variable conditions li
temperature, pH and aeration (Lin 
Sanchez et al., 2010). In addition to nutrients, medium may also 
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he production of 
antimicrobial metabolites by microorganisms. The production 
of antibiotics through fermentation is influenced by the 
concentration and type of carbon, nitrogen, phosphorous 
sources, as well as trace elements and also variable conditions like 

., 2010; 
2010). In addition to nutrients, medium may also 

contain various inhibitors of microbial growth and biosynthesis, 
which may affect the antibiotic production. For improving the 
antibacterial metabolites from 
components and environm
vital role.

The present study was undertaken to investigate the effect of 
different nutrients and cultural conditions on the production of 
antibacterial metabolites by the isolate 
BC 01 and to
production.

 

Materials and methods

Isolation of actinomycetes
The actinomycetes

mangrove soil Visakhapatnam, Andhra Pradesh, India by 
using serial dilution plating techniques on y
extract, glucose (ISP
sporulation and stored under refrigeration at 4 °C until 
further use. 

Morphological, cultural and physiological characteristics 
of the strain were studied by using International 
Streptomyces Project (ISP) media recommended by Shirling 
and Gottlieb (1966). The 16S rRNA gene partial sequence of 
the strain BC 01 was deposited in NCBI nucleotide database 
with Accession No JX126485 and the sequence was 
correlated with genus 
phylogenetic tree was reconstructed by using neighbor
joining method. The results stipulate that the BC 01 strain 
closely resembles with the genus 
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15399T (AB184650). By comparing the phenotypic and 
phylogenetic data, it was confirmed that the strain BC 01 
belongs to Streptomyces coelicoflavus (Rao and Rao, 2013). 

The production of antibacterial metabolite yield by the 
Streptomyces coelicoflavus BC 01 strain was optimized by using 
different nutritional and environmental parameters such as 
carbon, nitrogen, NaCl, pH, temperature, agitation and aeration. 

 
Test microorganisms 
All test organisms employed in the present investigation were 

procured from Microbial Type Culture Collection (MTCC), 
Chandigarh, India. The test organisms used for the 
determination of antibacterial activity are Staphylococcus aureus 
(MTCC 3160), Bacillus subtilis (MTCC 441), Bacillus cereus 
(MTCC 430), Pseudomonas aeruginosa (MTCC 424), 
Escherichia coli (MTCC 443) and Proteus vulgaris (MTCC 
426). 

 
Inoculum preparation 
Five ml of sterile 0.9% NaCl solution were added to a 7 day 

old, well sporulated, slant of the culture. The spores were scraped 
from the slant into sterile saline solution and the resulting spore 
suspension, at 10% level, was aseptically transferred into a 500 ml 
Erlenmeyer flask containing 200 ml of inoculum medium. The 
inoculum medium comprises (g/L): glucose 10.0; soya bean meal 
10.0; NaCl 5.0; CaCO3 5.0, with pH 7.0. The inoculated flasks 
were kept in an orbital shaker (120 rpm) at 28 °C for 48 hrs. The 
contents of the flasks were centrifuged at 3,000 rpm for 10 
minutes, followed by the supernatant removal. The cell pellet was 
washed thoroughly and suspended in 0.9% NaCl solution. This 
cell suspension was used as inoculum. 

 
Submerged fermentation 
Five ml of inoculum (5 mg/ml dry cell weight) were added to 

200 ml of production medium in 500 ml Erlenmeyer flask. 
Pridham and Gottlieb’s inorganic salts medium (Pridham and 
Gottlieb, 1948) was used as the production medium base. It was 
supplemented with different carbon and nitrogen sources to 
study their effect on growth and antibacterial metabolite 
production. The flasks were kept at 28 °C on an orbital shaker 
(120 rpm) for 96 hrs. At the end of the fermentation process, 5 
ml broth were collected and centrifuged at 3,000 rpm for 15 
minutes. The clear mycelia free culture supernatant was used for 
determination of antibiotic assay by using agar well diffusion 
method. 

 
Effects of various carbon sources 
Effect of various carbon sources on growth and antibiotic 

production was studied by incorporating them at 1% (w/v) 
level into the Pridham and Gottlieb’s inorganic salts medium. 
The carbon sources used were glucose, fructose, galactose, 
sucrose, mannose, sorbitol, inositol, xylose, arabinose and 
glycerol. In order to optimize the concentration of the best 
carbon source for maximum growth and antibacterial 
metabolite production, different concentrations of 0.2, 0.4, 
0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 g/100 ml were added to 
the production medium. 

 
Effects of various nitrogen sources 
The influence of various nitrogen sources on growth and 

antibiotic production was studied by adding inorganic 
nitrogen sources and organic nitrogen sources at 0.4% (w/v) 

level into the Pridham and Gottlieb’s inorganic salts medium. 
The optimized carbon source was used for further investigations. 
The inorganic compounds used were ammonium citrate, 
ammonium nitrate, ammonium sulphate, potassium nitrate and 
sodium nitrate. The organic nitrogen compounds employed 
were soya bean meal, peptone, beef extract, yeast extract, 
tryptone, amino acids-leucine, histidine, methionine, asparagine 
and glutamate. The concentrations of optimized nitrogen source 
(soya bean meal) used to determine the optimum concentration 
for growth and antibiotic production was 0.2, 0.4, 0.6, 0.8, 1.0, 
1.2, 1.4, 1.6, 1.8 and 2.0 g/100 ml. Each concentration of 
soya bean meal was incorporated into the Pridham and 
Gottlieb’s inorganic salts medium. 

 
Effects of different K2HPO4 concentrations   
In order to optimize the concentration of K2HPO4

for antibiotic production, different concentrations of 
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5 
g/100 ml were incorporated into the production 
medium. 

 
Effects of different NaCl concentrations  
Different NaCl concentrations 0.2,0.4, 0.6, 0.8, 1.0, 

1.2, 1.4, 1.6, 1.8 and 2.0 g/100 ml were incorporated 
into the Pridham and Gottlieb’s inorganic salts medium 
to determine the optimum concentration of NaCl for 
antibiotic production.  

 
Effects of incubation temperature 
Inoculated production medium was incubated at 

different temperatures of 15, 20, 25, 30, 35, 40, 45 and 
50 °C for 96 hrs to determine the optimum incubation 
temperature for antibiotic production. 

 
Effects of initial pH 
The production media were adjusted to different 

initial pH values of 3.2, 4.2, 5.2, 6.2, 7.2, 8.2, 9.2, 10.2 
and 11.2 in order to study the effect of initial pH of the 
medium on growth and antibiotic production.  

 
Effects of incubation period 
In order to investigate the optimal incubation 

period for maximum antibacterial metabolite 
production, the flasks with the mediums were 
inoculated and incubated at 30 °C for every 12 hours up 
to 144 hrs. 

 
Effects of agitation 
The effects of agitation on growth and antibacterial 

metabolite production were investigated by conducting 
the fermentation at different agitation speeds of 60, 80, 
100, 120, 140, 160, 180, 200, 220 and 240 rpm at 30 °C 
for 96 hrs consecutively. 

 
Growth measurements 
The growth of the organism was represented by the 

dry weight of the mycelium. The contents of the culture 
flask were filtered through a previously weighed dry 
Whatmann No. 1 filter paper, washed twice with 
distilled water. The filter paper together with the 
mycelial mass was dried in a hot air oven at 80 °C for 
18-24 hrs. At the end, the filter paper was weighed. 
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Antibiotic assay 
Culture samples (1 ml) were taken at specified time 

intervals, centrifuged at 3,000 rpm for 15 min at 4 °C and 
then separated into culture filtrate and mycelium. The 
antibiotic activities of mycelia free culture supernatant against 
test organisms were measured by agar well diffusion method.  

 
Statistical analysis 
All investigations were conducted in triplicates. The 

obtained data was exposed to standard deviation and bar 
diagrams were generated using Microsoft Excel 2010. 

Results and discussions 

Medium formulation is an essential stage for the 
production of specific bioactive compounds by pilot scale 
development and manufacturing processes. The constituents 
of a medium must satisfy the elemental requirements for cell 
biomass and metabolite production and there must be an 
adequate supply of energy for biosynthesis and cell 
maintenance. Numerous studies on the nutritional 
requirement for production of antibiotics and other non-
essential metabolites have demonstrated that there is a 
relation between nutrient limitation and biosynthesis of 
secondary metabolite (Fisher and Sonnenshein, 1991; Vilches 
et al., 1990). 

 
Effects of carbon source on antibiotic production 
The optimization of the antibacterial metabolite 

production was carried out in batch cultures. The 
Streptomyces coelicoflavus BC 01 isolate was cultivated in 
Pridham and Gottlieb’s inorganic salts medium, 
supplemented with different carbon sources 1% (w/v) and 
their effect on growth and antibacterial metabolite yield was 
studied. 

The Streptomyces coelicoflavus BC 01 isolate have grown 
well on media supplemented with different carbon sources. 
However, maximum antibacterial activity was obtained when 
media was supplemented with 1% (w/v) glucose followed by 
glycerol and sorbitol. The growth of the isolate with various 
carbon sources was studied in terms of dry weight of the 
mycelium. The effect of various carbon sources on growth 
and antibacterial metabolite production was tabulated in 
Table 1. The highest biomass production was observed with 
glucose (3.2 mg/ml) followed by glycerol (2.2 mg/ml) and 
sorbitol (1.2 mg/ml). The scanty biomass production was 
observed with mannose (0.2 mg/ml) followed by sucrose (0.5 

153

mg/ml), inositol (0.5 mg/ml) and arabinose (0.5 mg/ml). 
The maximum zone of inhibition was observed at 1% 

(w/v) glucose; for B. subtilis and P. vulgaris it was 33 mm, 
whereas for B. cereus, S. aureus, E. coli and P. aeruginosa it was 
29 mm. The results show that among all the carbon sources 
used in this study, glucose exhibited the maximum 
antibacterial activity. Therefore, further optimization process 
was carried out by using different concentrations of glucose as 
a carbon source. 

The effects of different concentrations (0.2, 0.4, 0.6, 0.8, 
1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 g/100 ml) of glucose on growth 
and antibacterial metabolite production were examined. 
Results are shown in Fig. 1. Among all the concentrations, the 
maximum zone of inhibition was observed at 1.2 g/100 ml 
concentration of glucose with a biomass of 3.5 mg/ml and the 
maximum zone of inhibition observed were P. vulgaris (38.33 
± 0.94), E. coli (35.66 ± 1.24), B. subtilis (35.33 ± 0.94), P. 
aeruginosa (34.66 ± 0.94), S. aureus (34.33 ± 1.69) and B. 
cereus (33.33 ± 1.24). The results suggested that 1.2 g/100 ml 
of glucose concentration was optimum for the antibacterial 
metabolite production. The increase of the glucose level of 
concentration to 1.4 g/100 ml lead to a reduced zone of 
inhibition, therefore further optimizing process was carried 
out by employing 1.2 g/100 ml of glucose as carbon source. 
The reduced zone of inhibition might be due to the uptake of 
glucose at higher concentrations than other carbon sources by 
the genus Streptomyces as was stated by Van Wezel et al. 
(2005) in case of Streptomyces coelicolor. Similarly Tarhan et 
al. (2011) found that antibiotic production of Streptomyces
sp. M4018 was higher in glucose containing medium when 
compared with glycerol and starch. The same result was also 
obtained by Vasavada et al. (2006) who reported that the 
highest antibacterial activity of Streptomyces sannanensis
strain RJT-1 was obtained when glucose at 1% (w/v) was 
used as a carbon source, followed by xylose and arabinose. 
Similar findings were also reported by Pandey et al. (2005) 
and Ripa et al. (2009) by which glucose was proved to be the 
best carbon source for antibiotic production by Streptomyces 
kanamyceticus M27 and Streptomyces sp. RUPA-08PR 
respectively. The study of Jakeman et al. (2006) indicated 
that the addition of carbon source to the media has a strong 
impact on the antibiotic production by Streptomyces 
venezuelae. However, the high concentration of glucose in the 
medium was observed to decrease the growth and also the 
antibiotic production by Gesheva et al. (2005) and Zhu et al.

Carbon Source 
1% (w/v) 

Growth in dry 
weight 

(mg/ml) 

Zone of inhibition in mm 

Gram Positive Bacteria Gram Negative Bacteria 

S. aureus B. subtilis B. cereus E. coli P. vulgaris P. aeruginosa 

Glucose 3.2 29 33 29 29 33 29 
Fructose 0.7 15 13 11 11 14 13 
Galactose 0.8 13 12 13 14 13 11 
Sucrose 0.5 15 14 10 13 12 13 
Mannose 0.2 10 12 11 12 10 11 
Sorbitol 1.2 14 15 13 14 14 12 
Inositol 0.5 13 15 12 12 11 13 
Xylose 0.6 11 12 10 12 13 11 
Arabinose 0.5 12 14 16 14 13 12 
Glycerol 2.2 17 18 16 17 18 18 

 

Table 1. The effects of various carbon sources on growth and antibacterial metabolite production by Streptomyces coelicoflavus BC 01 
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Effects of nitrogen source on antibiotic production
Nitrogen source along with the carbon source play an 

important role in the production of antibacterial metabolites. 
The effects of various organic and inorganic nitrogen sources 
on the growth and ant
represented in Table 2. Among the various inorganic 
nitrogen sources, the maximum antibacterial activity was 
obtained by ammonium nitrate with a biomass of 2.6 mg/ml, 
followed by ammonium sulphate with a biomass of 1.
mg/ml. The antibacterial activity of sodium nitrate, 
potassium nitrate and ammonium citra
but vary in biomass. 

Among the organic nitrogen sources, the highest 
antibacterial activity was attained by soya bean meal with a 
maximum zone 
cereus and P. vulgaris
zone of inhibition 
of inhibition was 15 mm. At 0.4% (w/v) of soya bean meal 
with a biomass of 3.2 mg/ml followed by yeast extract and 
beef extract with a biomass of 2.2 mg/ml and 1.8 mg/ml 
respectively. The lowest levels of antibacterial activity were 
obtained by peptone and leucine with a biomass of 1.3 mg/ml 
and 1.4 mg/ml respectively. Substitution of inorganic 
nitrogen sources with amino acids revealed that all the amino 
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antibacterial metabolites. For this reason different 
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acids glutamate, asparagine, histidine tryptone and 
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acids glutamate, asparagine, histidine tryptone and 
methonine showed worthy antibacterial act
leucine showed moderate antibacterial activity. 

In the case of inorganic and organic nitrogen sources, soya 
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the fermentation of cephalosporin by 
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phosphate progressively decreased the production. Similar 
findings were reported by Kish
production of tetracycline, actinomycin and candicidi.

 
Effects of NaCl concentration on antibiotic production
Salt concentration has a thoughtful effect on the 

production of antibacterial metabolite from microorganisms 
due to its effect on the osmotic pressure to the medium 

Fig. 2. Effects of soya bean meal on growth and production of 

antibacterial activity against test organisms in 

BC 01 

Fig. 3. Effects of K

antibacterial activity against test organisms in 

BC 01 
 

 

 

respectively. From the obtained results K
optimized at a concentration of 0.25 g/100 ml, whereas 
further increase in the concentration of K
negative impact and produced low levels of antibacterial 
activity and biomass growth. Similar results where lo
concentration of K2HPO

production was given by
(2004) and Majumdar and Majumdar (1965). This is because 
when concentration of inorganic phosphate in the culture 
media was high, the intracellula
increased and the primary metabolism was accelerated, 
inhibiting secondary metabolite production. In the present 
study increasing concentration of K
decrease antibiotic production. Similar reports where 
phosphate concentrations of more than 10 mM suppressed 
antibiotic synthesis in most microorganisms were given by 
Lounes (1996). Aharonowitz and Demain (1977) studied 
the relation between the concentration of inorganic 
phosphate in a medium and the production of antibioti
the fermentation of cephalosporin by 

; the production was increased when phosphate 
concentration increased to 25 mM. Further addition of 
phosphate progressively decreased the production. Similar 
findings were reported by Kish
production of tetracycline, actinomycin and candicidi.

Effects of NaCl concentration on antibiotic production
Salt concentration has a thoughtful effect on the 

production of antibacterial metabolite from microorganisms 
due to its effect on the osmotic pressure to the medium 

Effects of soya bean meal on growth and production of 

antibacterial activity against test organisms in 

Effects of K2HPO4 meal on growth and production of 

antibacterial activity against test organisms in 

Raghava R

 

rom the obtained results K
optimized at a concentration of 0.25 g/100 ml, whereas 
further increase in the concentration of K
negative impact and produced low levels of antibacterial 
activity and biomass growth. Similar results where lo

HPO4 had a positive effect on the 
production was given by Bibb (2005), Martin 

(2004) and Majumdar and Majumdar (1965). This is because 
when concentration of inorganic phosphate in the culture 
media was high, the intracellular concentration of ATP 
increased and the primary metabolism was accelerated, 
inhibiting secondary metabolite production. In the present 
study increasing concentration of K2

decrease antibiotic production. Similar reports where 
ntrations of more than 10 mM suppressed 

antibiotic synthesis in most microorganisms were given by 
Lounes (1996). Aharonowitz and Demain (1977) studied 
the relation between the concentration of inorganic 
phosphate in a medium and the production of antibioti
the fermentation of cephalosporin by 

; the production was increased when phosphate 
concentration increased to 25 mM. Further addition of 
phosphate progressively decreased the production. Similar 
findings were reported by Kishimoto 
production of tetracycline, actinomycin and candicidi.

Effects of NaCl concentration on antibiotic production
Salt concentration has a thoughtful effect on the 

production of antibacterial metabolite from microorganisms 
due to its effect on the osmotic pressure to the medium 

Effects of soya bean meal on growth and production of 

antibacterial activity against test organisms in Streptomyces coelicoflavus

meal on growth and production of 

antibacterial activity against test organisms in Streptomyces coelicoflavus

aghava Rao KV et al

rom the obtained results K2HPO4

optimized at a concentration of 0.25 g/100 ml, whereas 
further increase in the concentration of K2HPO4 showed 
negative impact and produced low levels of antibacterial 
activity and biomass growth. Similar results where lo

had a positive effect on the 
Bibb (2005), Martin 

(2004) and Majumdar and Majumdar (1965). This is because 
when concentration of inorganic phosphate in the culture 

r concentration of ATP 
increased and the primary metabolism was accelerated, 
inhibiting secondary metabolite production. In the present 

2HPO4 tended to 
decrease antibiotic production. Similar reports where 

ntrations of more than 10 mM suppressed 
antibiotic synthesis in most microorganisms were given by 
Lounes (1996). Aharonowitz and Demain (1977) studied 
the relation between the concentration of inorganic 
phosphate in a medium and the production of antibioti
the fermentation of cephalosporin by Streptomyces

; the production was increased when phosphate 
concentration increased to 25 mM. Further addition of 
phosphate progressively decreased the production. Similar 

imoto et al. (1996) for 
production of tetracycline, actinomycin and candicidi. 

Effects of NaCl concentration on antibiotic production
Salt concentration has a thoughtful effect on the 

production of antibacterial metabolite from microorganisms 
due to its effect on the osmotic pressure to the medium 

Effects of soya bean meal on growth and production of 
Streptomyces coelicoflavus

meal on growth and production of 

Streptomyces coelicoflavus

KV et al. / Not Sci Biol, 2015, 7(2

 

 

4 was 
optimized at a concentration of 0.25 g/100 ml, whereas 

showed 
negative impact and produced low levels of antibacterial 
activity and biomass growth. Similar results where low 

had a positive effect on the 
Bibb (2005), Martin 

(2004) and Majumdar and Majumdar (1965). This is because 
when concentration of inorganic phosphate in the culture 

r concentration of ATP 
increased and the primary metabolism was accelerated, 
inhibiting secondary metabolite production. In the present 

tended to 
decrease antibiotic production. Similar reports where 

ntrations of more than 10 mM suppressed 
antibiotic synthesis in most microorganisms were given by 
Lounes (1996). Aharonowitz and Demain (1977) studied 
the relation between the concentration of inorganic 
phosphate in a medium and the production of antibiotics in 

Streptomyces
; the production was increased when phosphate 

concentration increased to 25 mM. Further addition of 
phosphate progressively decreased the production. Similar 

(1996) for 

Effects of NaCl concentration on antibiotic production 
Salt concentration has a thoughtful effect on the 

production of antibacterial metabolite from microorganisms 
due to its effect on the osmotic pressure to the medium 

(Pelczer 
to culture media at different concentrations such as 0.2%, 
0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, 1.6% 1.8 and 2.0% 
respectively. The effect of different concentrations of NaCl 
on growth and antibacterial metaboli
and the results were presented in Fig. 4. The results indicated 
that NaCl concentration greatly influenced the production of 
the antibacterial metabolite. The maximum antibacterial 
metabolite yield was obtained at 1.0 g/100 ml con
of NaCl with a biomass of 3.2 mg/ml and the maximum zone 
of inhibitions observed were 
aureus 
(32.33 ± 1.24), 
± 1.24) at 1.0 g/100 ml concentration of NaCl. The growth 
of the organism gradually decreased with the increase of NaCl 
concentration. Similar types of results were reported by Ripa 
et al. 
et al. 
antibiotic production was at 1% of NaCl in culture medium. 
The requirement of NaCl for the production of bioactive 
metabolites seems to be different among 
Saha 

Effects of soya bean meal on growth and production of 
Streptomyces coelicoflavus

 

meal on growth and production of 

Streptomyces coelicoflavus

 

 Fig. 4. Effects of NaCl on growth and production of antibacterial activity 

against test organisms in 

 
by Streptomyces
(2009) at 2% NaCl by 
Salinity levels must be optimized for different growth and 
production phases, by reducing the sea water levels in media 
composition, w

 
Effects of temperature on antibiotic production
Streptomyces coelicoflavus 

incubation temperature for a relatively good growth and 
antibacterial metabolite production. The effect of 
temperature on growth and antibacterial metabolite 
production was shown in Fig. 5. The increase of the 
incubation temperature from 25 °C to 35 °C increased the 
growth of the biomass and the production of the antibacterial 
metabolite respectively. The maximum
obtained at 30 °C with a biomass of 3.8 mg/ml and the 
maximum zone of inhibition observed were 
(36.66 ± 0.94),
0.94),
cereus
the temperature was optimized at 30 °C for antibacterial 
metabolite production with a biomass of 3.8 mg/ml. The 
antibacterial activity was decreased consistently with the cell 
mass by increas

Not Sci Biol, 2015, 7(2):151
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0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, 1.6% 1.8 and 2.0% 
respectively. The effect of different concentrations of NaCl 
on growth and antibacterial metaboli
and the results were presented in Fig. 4. The results indicated 
that NaCl concentration greatly influenced the production of 
the antibacterial metabolite. The maximum antibacterial 
metabolite yield was obtained at 1.0 g/100 ml con
of NaCl with a biomass of 3.2 mg/ml and the maximum zone 
of inhibitions observed were 
aureus (33.66 ± 1.24)
(32.33 ± 1.24), E. coli

.24) at 1.0 g/100 ml concentration of NaCl. The growth 
of the organism gradually decreased with the increase of NaCl 
concentration. Similar types of results were reported by Ripa 

 (2009) in Streptomyces 
et al. (2011) in
antibiotic production was at 1% of NaCl in culture medium. 
The requirement of NaCl for the production of bioactive 
metabolites seems to be different among 
Saha et al. (2010) reported maximum antibioti

Fig. 4. Effects of NaCl on growth and production of antibacterial activity 

against test organisms in 

Streptomyces sp. MNK 7 at 5% of NaCl and Singh 
(2009) at 2% NaCl by 
Salinity levels must be optimized for different growth and 
production phases, by reducing the sea water levels in media 
composition, which increase the growth and production.

 
Effects of temperature on antibiotic production
Streptomyces coelicoflavus 

incubation temperature for a relatively good growth and 
antibacterial metabolite production. The effect of 

mperature on growth and antibacterial metabolite 
production was shown in Fig. 5. The increase of the 
incubation temperature from 25 °C to 35 °C increased the 
growth of the biomass and the production of the antibacterial 
metabolite respectively. The maximum
obtained at 30 °C with a biomass of 3.8 mg/ml and the 
maximum zone of inhibition observed were 
(36.66 ± 0.94), B. subtilis 
0.94), P. vulgaris (34.33 ± 0.47),
cereus (35.33 ± 0.47) respectively. From the observed results 
the temperature was optimized at 30 °C for antibacterial 
metabolite production with a biomass of 3.8 mg/ml. The 
antibacterial activity was decreased consistently with the cell 
mass by increasing the growth temperature range between 35

151-159 

1993). To observe this effect NaCl was added 
to culture media at different concentrations such as 0.2%, 
0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, 1.6% 1.8 and 2.0% 
respectively. The effect of different concentrations of NaCl 
on growth and antibacterial metaboli
and the results were presented in Fig. 4. The results indicated 
that NaCl concentration greatly influenced the production of 
the antibacterial metabolite. The maximum antibacterial 
metabolite yield was obtained at 1.0 g/100 ml con
of NaCl with a biomass of 3.2 mg/ml and the maximum zone 
of inhibitions observed were B. cereus 

(33.66 ± 1.24), P. vulgaris
E. coli (31.33 ± 0.47) and 

.24) at 1.0 g/100 ml concentration of NaCl. The growth 
of the organism gradually decreased with the increase of NaCl 
concentration. Similar types of results were reported by Ripa 

Streptomyces sp. RUPA
(2011) in Nocardioides luteus

antibiotic production was at 1% of NaCl in culture medium. 
The requirement of NaCl for the production of bioactive 
metabolites seems to be different among 

. (2010) reported maximum antibioti

Fig. 4. Effects of NaCl on growth and production of antibacterial activity 

against test organisms in Streptomyces coelicoflavus

sp. MNK 7 at 5% of NaCl and Singh 
(2009) at 2% NaCl by Streptomyces tanashiensis
Salinity levels must be optimized for different growth and 
production phases, by reducing the sea water levels in media 

hich increase the growth and production.

Effects of temperature on antibiotic production
Streptomyces coelicoflavus BC 01 showed a narrow range of 

incubation temperature for a relatively good growth and 
antibacterial metabolite production. The effect of 

mperature on growth and antibacterial metabolite 
production was shown in Fig. 5. The increase of the 
incubation temperature from 25 °C to 35 °C increased the 
growth of the biomass and the production of the antibacterial 
metabolite respectively. The maximum
obtained at 30 °C with a biomass of 3.8 mg/ml and the 
maximum zone of inhibition observed were 

B. subtilis (36.33 ± 1.24), 
(34.33 ± 0.47), 

(35.33 ± 0.47) respectively. From the observed results 
the temperature was optimized at 30 °C for antibacterial 
metabolite production with a biomass of 3.8 mg/ml. The 
antibacterial activity was decreased consistently with the cell 

ing the growth temperature range between 35

1993). To observe this effect NaCl was added 
to culture media at different concentrations such as 0.2%, 
0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, 1.6% 1.8 and 2.0% 
respectively. The effect of different concentrations of NaCl 
on growth and antibacterial metabolite yield was investigated 
and the results were presented in Fig. 4. The results indicated 
that NaCl concentration greatly influenced the production of 
the antibacterial metabolite. The maximum antibacterial 
metabolite yield was obtained at 1.0 g/100 ml con
of NaCl with a biomass of 3.2 mg/ml and the maximum zone 

B. cereus (35.33 ± 0.94),
P. vulgaris (32.33 ± 0.47)

(31.33 ± 0.47) and P. aeruginosa
.24) at 1.0 g/100 ml concentration of NaCl. The growth 

of the organism gradually decreased with the increase of NaCl 
concentration. Similar types of results were reported by Ripa 

RUPA-08PR and
Nocardioides luteus where maximum 

antibiotic production was at 1% of NaCl in culture medium. 
The requirement of NaCl for the production of bioactive 
metabolites seems to be different among Streptomyces

. (2010) reported maximum antibioti

Fig. 4. Effects of NaCl on growth and production of antibacterial activity 
coelicoflavus BC 01

sp. MNK 7 at 5% of NaCl and Singh 
Streptomyces tanashiensis

Salinity levels must be optimized for different growth and 
production phases, by reducing the sea water levels in media 

hich increase the growth and production.

Effects of temperature on antibiotic production
BC 01 showed a narrow range of 

incubation temperature for a relatively good growth and 
antibacterial metabolite production. The effect of 

mperature on growth and antibacterial metabolite 
production was shown in Fig. 5. The increase of the 
incubation temperature from 25 °C to 35 °C increased the 
growth of the biomass and the production of the antibacterial 
metabolite respectively. The maximum antibiotic yield was 
obtained at 30 °C with a biomass of 3.8 mg/ml and the 
maximum zone of inhibition observed were 

(36.33 ± 1.24), S. aureus
 E. coli (35.66 ± 1.69) and 

(35.33 ± 0.47) respectively. From the observed results 
the temperature was optimized at 30 °C for antibacterial 
metabolite production with a biomass of 3.8 mg/ml. The 
antibacterial activity was decreased consistently with the cell 

ing the growth temperature range between 35

1993). To observe this effect NaCl was added 
to culture media at different concentrations such as 0.2%, 
0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, 1.6% 1.8 and 2.0% 
respectively. The effect of different concentrations of NaCl 

te yield was investigated 
and the results were presented in Fig. 4. The results indicated 
that NaCl concentration greatly influenced the production of 
the antibacterial metabolite. The maximum antibacterial 
metabolite yield was obtained at 1.0 g/100 ml concentration 
of NaCl with a biomass of 3.2 mg/ml and the maximum zone 

(35.33 ± 0.94), S. 
(32.33 ± 0.47), B. subtilis

P. aeruginosa (30.66 
.24) at 1.0 g/100 ml concentration of NaCl. The growth 

of the organism gradually decreased with the increase of NaCl 
concentration. Similar types of results were reported by Ripa 

08PR and by El-Refai 
where maximum 

antibiotic production was at 1% of NaCl in culture medium. 
The requirement of NaCl for the production of bioactive 

Streptomyces strains. 
. (2010) reported maximum antibiotic production 

Fig. 4. Effects of NaCl on growth and production of antibacterial activity 

BC 01 

sp. MNK 7 at 5% of NaCl and Singh et al
Streptomyces tanashiensis A2D. 

Salinity levels must be optimized for different growth and 
production phases, by reducing the sea water levels in media 

hich increase the growth and production. 

Effects of temperature on antibiotic production 
BC 01 showed a narrow range of 

incubation temperature for a relatively good growth and 
antibacterial metabolite production. The effect of 

mperature on growth and antibacterial metabolite 
production was shown in Fig. 5. The increase of the 
incubation temperature from 25 °C to 35 °C increased the 
growth of the biomass and the production of the antibacterial 

antibiotic yield was 
obtained at 30 °C with a biomass of 3.8 mg/ml and the 
maximum zone of inhibition observed were P. aeruginosa

S. aureus (34.66 ± 
(35.66 ± 1.69) and B. 

(35.33 ± 0.47) respectively. From the observed results 
the temperature was optimized at 30 °C for antibacterial 
metabolite production with a biomass of 3.8 mg/ml. The 
antibacterial activity was decreased consistently with the cell 

ing the growth temperature range between 35

155

1993). To observe this effect NaCl was added 
to culture media at different concentrations such as 0.2%, 
0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, 1.6% 1.8 and 2.0% 
respectively. The effect of different concentrations of NaCl 

te yield was investigated 
and the results were presented in Fig. 4. The results indicated 
that NaCl concentration greatly influenced the production of 
the antibacterial metabolite. The maximum antibacterial 

centration 
of NaCl with a biomass of 3.2 mg/ml and the maximum zone 

S. 
B. subtilis

(30.66 
.24) at 1.0 g/100 ml concentration of NaCl. The growth 

of the organism gradually decreased with the increase of NaCl 
concentration. Similar types of results were reported by Ripa 

Refai 
where maximum 

antibiotic production was at 1% of NaCl in culture medium. 
The requirement of NaCl for the production of bioactive 

strains. 
c production 

 

Fig. 4. Effects of NaCl on growth and production of antibacterial activity 

et al. 
A2D. 

Salinity levels must be optimized for different growth and 
production phases, by reducing the sea water levels in media 

BC 01 showed a narrow range of 
incubation temperature for a relatively good growth and 
antibacterial metabolite production. The effect of 

mperature on growth and antibacterial metabolite 
production was shown in Fig. 5. The increase of the 
incubation temperature from 25 °C to 35 °C increased the 
growth of the biomass and the production of the antibacterial 

antibiotic yield was 
obtained at 30 °C with a biomass of 3.8 mg/ml and the 

P. aeruginosa
(34.66 ± 

B. 
(35.33 ± 0.47) respectively. From the observed results 

the temperature was optimized at 30 °C for antibacterial 
metabolite production with a biomass of 3.8 mg/ml. The 
antibacterial activity was decreased consistently with the cell 

ing the growth temperature range between 35-

155



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

50 °C. Even though biomass was deposited at 45 °C and 50 
°C, the antibacterial metabolite yield was negligible. Similar 
findings for production of antibiotics from 
aureofacines MY18 and 
reported by Tawfik 
Vastrad and Nelagund (2011), Abdel
confirmed the optimum temperature of 30 °C for production 
of neomycin, kanamycin and anicomycin production by 
Streptomyces 
Streptomyces griseolus 
produces antibiotics at temperature near 27 °C. Generally, 
the range of a temperature supporting good growth is as wide 
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under one constant temperature from the beginning to the 
end as stated by James and Edwards (1989).
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50 °C. Even though biomass was deposited at 45 °C and 50 
°C, the antibacterial metabolite yield was negligible. Similar 
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MY18 and Streptomyces 
reported by Tawfik et al. (1991).
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under one constant temperature from the beginning to the 
end as stated by James and Edwards (1989).
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the range of a temperature supporting good growth is as wide 
as 25 °C, but the temperature range adequate for a good 
production of secondary metabolites is narrow, of 5~10 °C. 
Usually, cultivation for antibiotic production is performed 
under one constant temperature from the beginning to the 
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8.2) although the strain withstands a broad range of pH 
10.2). The isolate 

optimized at pH 7.2 in the culture medium. The effect of pH is 
one of the vital physiological factors, which influence not only 
the growth, but also the production of antibiotics. The balanced 
use of the carbon and nitrogen sources will form a basis for pH 
control, as buffering capacity is provided by the proteins, peptides 
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have their optimum growth on neutral environment. As a result, 
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For instance, granaticin production was the highest when initial 
pH of cultural medium was adjusted to 6.5
1991). A similar finding was reported by Bystrykh 

treptomyces coelicolor 
concentrations of glucose in the production medium makes it 
acidic in nature. As the fermentation progress, the cell mass 
increase by utilizing the nutrients, and thus depletion of 
nutrients make the medium alkaline in nature (Basak and 
Majumdar, 1973; Bhuyan, 1962). Hence, the pH of culture 
medium for the production of antibiotics must be neutral in 
Streptomyces coelicoflavus 
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control, as buffering capacity is provided by the proteins, peptides 
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