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Abstract

Low temperature is an important abiotic stress which reduces crops growth and productivity and causes physiological damages 
to cellular structures. The aim of this study was to investigate the probability of spermine application to improve chilling tolerance of 
maize under stress conditions. The treatments were included seed priming with spermine (30, 60 and 90 mg/l solutions) and normal 
and stress condition. Seed emergence was improved by spermine priming on both conditions and mean emergence time (MET) was 
also decreased with priming. Shoot and root length was highly reduced under stress conditions, but the treated seeds were improved 
along with increased spermine concentration. Seedling dry weight was also affected by priming and reduced weight of stressful seedlings 
was alleviated by spermine priming. Decreased relative water content on seedlings under stress was elevated by the treatments and 
significantly increased. Electrolyte leakage was also recovered by applied treatments while it was adversely decreased on cold conditions. 
Antioxidative system was highly responded to spermine application. Superoxide dismutase (SOD) activity increased on both normal 
and stress conditions, but a little decrease was observed on seedlings treated with 90 ppm level and under chilling conditions. Catalase 
activity was also amplified by spermine treatments. Priming had a great effect on ascorbate peroxidase (APX) activity on both stressful 
and normal seedlings and increased it compare with non treated seedlings. It is also important to note that with increasing spermine 
concentration to 90 ppm, no considerable differences were observed. Thus, 60 ppm concentration could be proposed as the appropriate 
level of spermine in order to improve chilling tolerance of maize seedlings. 
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Introduction

Low temperature is known as an important limiting 
factor which reduces plants productivity around the world. 
Maize (Zea mays L.) is a thermophilic crop and optimum 
temperature for maize germination is between 25-28°C. 
Low temperature causes injuries to maize germination and 
seedling growth, so it will be damaging specially for early 
spring planting (Parera and Cantliffe, 1994). 

Chilling stress could induce different kinds of dam-
ages such as reducing growth rate (Sowinski et al., 2005; 
Verheul et al., 1996) water uptake disturbance (Aroca et 
al., 2003a) photosynthesis efficiency (Foyer et al., 2002; 
Haldimann, 1997) changes in membrane properties (Pin-
hero et al., 1997) and particularly considerable increase in 
reactive oxygen species (ROS) production (Foyer et al., 
2002) as well as enzymatic and non-enzymatic antioxi-
dants (Leipner et al., 1999; Skrudlik et al., 2000).

A common consequence of most environmental stress-
es (Hayat et al., 2007; Muthuchelian et al., 2001; Sairam 
et al., 2005) is an increased production of ROS. Chill-
ing has also similar effects which was studied by some re-
searches (Farooq et al., 2008a; 2008b). These ROS, such 
as superoxide radical (O−), hydrogen peroxide (H2O2) and 
hydroxyl (HO−) are exceedingly toxic to cellular and sub-
cellular structures (Schutzendubel and Polle, 2002). How-

ever, plants have an efficient antioxidant system includes 
enzymatic and non-enzymatic antioxidants (superoxide 
dismutase, peroxidase, catalase, and glutathione reductase, 
carotenoids, glutathione, ascorbic acid) and also some im-
portant metabolites like proline to counter with oxidative 
stress and protect the plants from oxidative damage (Apel 
and Hirt, 2004).

Polyamines (PAs) are ubiquitous low-molecular-
weight amines involved in of plant growth and develop-
ment regulation (Martin-Tanguy, 2001). Polyatomic na-
ture of this compounds made them able to interact with 
proteins, nucleic acids and membrane phospholipids and 
this leads to activating or stabilizing these molecules. The 
diamine putrescine (Put), the triamine spermidine (Spd) 
and the tetraamine spermine (Spm) are the most common 
polyamines which may be present in the free, soluble con-
jugated and insoluble bound forms.

There have been several mechanisms proposed for the 
protective effects of PAs as well as stabilizing DNA struc-
ture (Kasinathan and Wingler, 2004) impeding lipid per-
oxidation and membrane integrity (Ha et al., 1998). Kubis 
(2008) also indicated that PAs may acts as free radicals 
scavengers. In fact, PAs accumulation could protect plant 
cells when they exposed to environmental stresses (Nayyar 
and Chander, 2004; Sanchez et al., 2005).
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Where n is the number of seeds which emerged on day 
D, and D is the number of days counted from the begin-
ning of emergence. 

After 24 days of emergence, samples were collected for 
biochemical analysis. Seedlings were carefully removed to 
evaluate seedling shoot and root length. Seedling fresh 
weight was determined immediately after harvest while 
dry weight was taken after drying at 70°C for 2 days.

Membrane permeability 
Membrane permeability was determined by measur-

ing the electrolyte leakage using the method of Blum and 
Ebercon (1981). Six leaf samples were washed with dis-
tilled water and soaked in 6 mL of distilled water for 12 h. 
The conductivity of the solution (C1) was measured with 
a conductivity meter. Samples were then heated in boiling 
water for 20 min and then cooled to room temperature. 
The conductivity of killed tissues (C2) was again mea-
sured. Membrane permeability was calculated as the ratio 
between C1 and C2.

Relative water content
In order to determine relative water content (RWC) 

fresh leaf discs with 2 cm2 diameter were weighted floated 
on deionized water for saturation until 24 hours and satu-
rated leaf weight was recorded. Dry mass was also noted 
after dehydration at 70°C for 48 h. the following formula 
was used to calculate RWC (Hayat et al., 2007):

weight dryweight Turgor
weight dryweight Fresh

−

−
=RWC

Extraction and determination of enzyme activities
Leaves tissue (100 mg FW) were placed into liquid 

nitrogen and then homogenized with a pre-chilled mor-
tar and pestle under ice cold-conditions in 4 mL 50 mM 
potassium phosphate buffer, pH 7.0, with adding 1 mM 
EDTA. The homogenate was centrifuged at 15000 rpm, at 
4°C for 20 min. The supernatant was stored at -20°C and 
used for determination of enzyme activity.

Superoxide dismutase (SOD, EC 1.15.1.1) activity was 
assessed by the method of Giannopolitis and Ries (1977). 
The inhibition of photochemical reduction of NBT was 
measured and the color was developed by adding 2.4 mL 
of 50 mM potassium phosphate buffer solution (pH 7.8), 
0.2 mL of 195 mM methionine, 0.1 mL of 0.3 mM EDTA, 
0.2 mL of 1.125 mM NBT and 0.2 mL of 60 µM riboflavin 
to 50 µL enzyme extract. Reaction mixtures were illumi-
nated for about 15 min at 5000 Lux light intensity. The 
solution absorbance was measured at 560 nm. One unit of 
SOD was defined as the amount of enzyme causing half-
maximal inhibition of the NBT reduction.

Roy et al. (2005) and Kubis (2008) showed that exog-
enous application Spd could prevent the electrolyte and 
amino acid leakage or recovering the plasma membrane 
damage in rice cultivars in response to salinity, in chilling 
tolerance and in protection of water stressed cucumber 
leaves. The protective role of Spm against salt stress has 
been well established in Arabidopsis (Yamaguchi et al., 
2006). 

Several studies reported priming advantages on ger-
mination and stand establishment improving (Basra et 
al., 2005; Farooq et al., 2006a; 2006b; 2006c). Priming 
provides faster and synchronous seedling emergence (Mc-
Donald, 1999). Moreover, priming has also been found 
effective to increase the germination under chilling con-
ditions. Farooq et al. (2008a) proposed seed priming as a 
tool to improve chilling tolerance in late-sown wheat.

In the present study, the effects of seed priming with 
different concentrations of spermine solutions on maize 
plants under normal and chilling conditions were investi-
gated to explore the possible biochemical basis of chilling 
tolerance.

Materials and methods

Plant materials and growth conditions
Seeds of Maize (Single cross 704) were obtained from 

the Center of Agricultural Researches and Natural Re-
sources, Khorasan Razavi, Iran. Seeds were surface steril-
ized with 2% HgCl2 for 20 min, washed twice with dis-
tilled water and air dried. For seed treatments, seeds were 
soaked in 30, 60 and 90 ppm solutions of spermine (solved 
in distilled water) for 24 hours. Untreated seeds (treated 
by water) were considered as control. 

Treated and untreated seeds were sown in 1 liter plas-
tic pots containing water-washed sand, and then placed in 
a growth chamber with a photosynthetically active pho-
ton flux density of 320 mmol m-2 s-1 and a photoperiod of 
16/8 h light/dark. One series of pots was placed at optimal 
temperature (27°C) as control, while the other was kept 
at chilling stress (15°C) during the period of study. The 
number of emerged seedlings was daily recorded. Time 
required to reach 50% emergence of seedlings (E50) was 
calculated by following formulae of Coolbear et al. (1984) 
modified by Farooq et al. (2005):
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Where N is the final number of emerged seeds, and ni 
and nj are the cumulative number of seeds emerged counts 
at times ti and tj when ni < N/2 < nj.

Mean emergence time (MET) was calculated accord-
ing to the equation of Ellis and Roberts (1981):
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Ascorbate peroxidase (APX, EC 1.11.1.11) activity 
was measured based on the method of Nakano and Asada, 
1981. The reactive solution contained 50 mM sodium 
phosphate buffer (pH 7.0), 0.5 mM ascorbate, 0.1 mM 
H2O2 and 10 µl of enzyme extracts. The decrease in ab-
sorbance at 290 nm was recorded. Extinction coefficient 
of 2.8 mM-1 cm-1 was used to calculate enzyme activity. 
One unit of APX was defined as the amount of degrad-
ing 1 µmol of ascorbate min-1 mg protein-1 under the assay 
conditions. 

Catalase (CAT, EC 1.11.1.6) activity was determined 
following the utilization of H2O2 at 240 nm for 1 min 
(Aebi, 1984). The reaction mixture contained 100 mM 
potassium phosphate buffer (pH 7.0), 15 mM H2O2 and 
50 µl of enzyme extract in final volume of 3 ml. The en-
zyme activity was calculated using the extinction coeffi-
cient (39.4 mM-1 cm-1) and expressed as units (1 µmol of 
H2O2 decomposed per minute) per mg protein.

Statistical analysis
The experiment was a 2×4 factorial based on a ran-

domized complete block design with four replications 
and three seedlings on each pot. Analysis of variance per-
formed using SAS 9.1 and general linear models (PROC 
GLM) procedure (SAS Institute, Cary, NC). The LSD 
test was used to comparison of means at p= 0.05.

Results and discussion

Growth parameters
Exogenous application of spermine improved seed 

emergence under both optimal and stress conditions (Fig. 
1A). Application of 30 ppm spermine seed priming sig-
nificantly decreased the E50, but it was increased with 
increasing spermine concentration. There were no signifi-

cant differences between the 60 and 90 ppm treatments, 
but still had the lower E50 compared with control treat-
ment. (Xiong et al., 2002).

Chilling impairments mainly consist of alteration of 
metabolic processes, decrease in enzymatic activities, re-
duction of photosynthetic capacity and changes in mem-
brane fluidity among others (Dubey, 1997). Plants adopt 
with the stressful conditions through different kind of 
mechanism, mostly by acclimation (Lee et al., 2002). 
There is a group of evidences which approved that cold 
acclimation could be achieved by exogenous application 
of PAs (Groppa and Benavides, 2008; Xiong et al., 2002). 
These compounds regulate plant growth and development 
through different physiological processes (Martin-Tanguy, 
2001; Paschalidis and Roubelakis-Angelakis, 2005).

Mean emergence time (MET) was also significantly 
affected by priming such that along with increasing the 
spermine levels, MET was decreased (Fig .1B)., There was 
also no difference between the 60 and 90 ppm treatment. 
The seedlings under chilling condition showed a notice-
able decrease in shoot length, as well as root length, but 
it was improved on account of spermine treatments (Fig. 
2A and B). There was a little decrease in both shoot and 
root length at 90 ppm spermine concentration, which 
was not significant. It can be concluded that limiting ef-
fects of chilling on seedlings emergence and growth could 
be alleviated by spermine seed priming, but the suitable 
concentration is 60 ppm and higher level will not be more 
efficient. Exogenous application of spermine as an impor-
tant PAs improves germination properties and seedling 
length, which is related to the role of PAs on germination 
and primary growth regulation. Xu et al. (2010) were also 
observed the improving of germination percentage, index 
and mean germination time of chilling exposed Nicotiana 
tabacum primed with putrescine.

Fig. 1. Effect of spermine application on mean emergence time (MET) (A) and E50 (B) of maize seedlings under optimum and low 
temperature conditions. Data are the mean value of three replications ± SE which represented by the vertical bar in each graph 
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Fig. 2. Effect of spermine application on shoot (A) and root (B) length of maize seedlings under optimum and low temperature 
conditions. Data are the mean value of three replications ± SE which represented by the vertical bar in each graph 

Fig. 3. Effect of spermine application on electrolyte leakage (A), relative water content (RWC) (B) and seedling dry weight (C) of 
maize seedlings under optimum and low temperature conditions. Data are the mean value of three replications ± SE which repre-
sented by the vertical bar in each graph 
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mine treatment leads to reduce the electrolyte leakage and 
90 ppm spermine concentration had the lowest amount. 
These effects on seedlings under none chilling conditions 
were less clear. Seedling dry weight was significantly affect-
ed by spermine treatments and it was increased on chill-
ing stressed seedlings, as the others on control treatment 
(Fig. 3C). Like the previous, 90 ppm spermine treatment 
was not efficient and seedling dry weight was a little de-
creased on optimum temperature, while it had no change 
on stressful seedlings.

Membranes are the major targets of environmental 
stresses (Leshem, 1992). Induced changes on plant cells 
under chilling stress are mainly related to an increase in 
membrane permeability, affecting membrane integrity 
and cell compartmentation under stress conditions (Cam-
pos et al., 2003). Enhanced electrolyte leakage was consid-
ered to be a symptom of stress-induced membrane dam-
age and deterioration (Feng et al., 2003). It was reported 
that Exogenous application of spermidine as an important 

Relative water content
There was a drastic decrease on chilling exposed seed-

lings relative water content (RWC). But exogenous sper-
mine application could enhance the RWC content and 
increased it, significantly (Fig. 3B). Plants grown under 
normal conditions showed a very slight increase on RWC. 
The considerable point here is that different spermine con-
centrations had no effect on RWC on both normal and 
stress conditions and RWC contents were nearly the same. 
So, the enhancement effect of spermine may be restricted 
to the low levels and increasing the applied concentration 
even may have negative side effects.

Electrolyte leakage and seedling dry weight
A decline on electrolyte leakage on both normal and 

stressful seedlings due to the spermine treatment was 
recorded during this experiment (Fig. 3A). Electrolyte 
leakage was adversely increased when the seedlings was 
exposed to chilling condition with no priming, but sper-

Fig. 4. Response of Antioxidative system of maize seedlings under optimum and low temperature conditions to spermine applica-
tion including Superoxide dismutase (SOD) (A), Catalaze (B) and Ascorbate Peroxidase (C). Data are the mean value of three 
replications ± SE which represented by the vertical bar in each graph 
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gested earlier that the PAs may act indirectly by elevating 
the levels of antioxidants or gene expression of antioxidant 
enzymes (Shen et al., 2000; Tang and Newton, 2005; Ver-
ma and Mishra, 2005; Wi et al., 2006) resulting in toler-
ance to numerous abiotic stresses. Result of the enzymatic 
antioxidants assessment in this experiment is similar to the 
mentioned achievements.  

Conclusions

Based on the results of this experiment, this can be 
concluded that spermine has a protective effect on plant 
tissues exposed to cold stress and this role is mainly related 
to membrane stabilizing and activating antioxidants pro-
duction processes in cellular structures. 
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