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AbstractAbstractAbstractAbstract    
    
The Rubiaceae family, comprising 550 species in the Philippines, is a significant source of bioactive 

components with ethnopharmacological uses. This study assessed the total phenolic content (TPC), total 
flavonoid content (TFC), and antioxidant activity of six Rubiaceae species, collected in Ilocos Norte, 
Philippines: Guettardella microphylla (Bartl. ex DC.) Merr., Timonius ternifolius (Bartl. ex DC.) Fern.-Vill., 
Kanapia monstrosa (A. Rich.) Arriola & Alejandro, Pyrostria triflora Arriola, Calaramo & Alejandro, Pyrostria 
subsessilifolia (Merr.) Arriola & Alejandro, and Psychotria luzoniensis (Cham. & Schltdl.) Fern.-Vill. 
Identification of the plant species was done using morphological characterization. The TFC results ranged 
between 1.86-3.81 mg quercetin equivalent/g dry weight (GAE/g DW), while TPC indicated 5.47-17.17 mg 
gallic acid equivalent/g dry weight (QE/g DW). G. microphylla showed the highest TFC (3.81±0.20 mg QE/g 
DW) while P. triflora exhibited the highest TPC (17.17±0.83 mg GAE/g DW). Antioxidant profiling showed 
P. luzoniensis exhibiting the highest activity in the NOS, ABTS, DPPH, and FRAP assays. G. microphylla 
showed the highest hydrogen peroxide scavenging activity, while T. ternifolius demonstrated the highest 
hydroxyl radical scavenging activity. Findings suggest that the crude methanolic extracts of the Rubiaceae 
species have relatively high TPC and TFC values and exhibit promising antioxidant capacities. 

    
Keywords:Keywords:Keywords:Keywords: antioxidant; DPPH; Guettarda; Psychotria; Rubiaceae; total phenolic content; total 

flavonoid content 
 
 
IntroductionIntroductionIntroductionIntroduction    
 
Oxidants, particularly free radicals, are of key interest given their importance in various physiological 

processes and involvement in the pathogenesis of a wide range of diseases. Oxidants are generally categorized as 
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reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS play biologically significant 
roles in several normal bodily functions, including adaptation to hypoxia, signal transduction, as well as control 
of autophagy, immunity, differentiation, and lifespan (Sena and Chandel, 2012; Di Meo et al., 2016). However, 
when the body fails to counteract the overproduction of these species through antioxidant networks present in 
cells, the excessive levels of ROS, RNS, and associated free radicals can result in oxidative stress, which can 
subsequently lead to cellular dysfunction, excessive inflammation, and chronic conditions such as cancer, 
diabetes, cataracts, and many cardiovascular, inflammatory, and neurodegenerative diseases (Newsholme et al., 
2016; Hernández-Rodríguez et al., 2019). 

Antioxidants are substances that have become more significant in recent years because of their capacity 
to counteract some of the harmful effects of elevated ROS concentrations (Yu et al., 2020). Although many 
synthetic antioxidants have been developed, certain studies have reported that these may induce adverse effects 
on human health (Lourenço et al., 2019). Therefore, looking into natural products for safer and similarly 
effective antioxidants may offer a promising alternative. Plants that contain beneficial phytochemicals may 
serve as natural antioxidant sources, as exemplified in many studies (Altemimi et al., 2017). Phenolic 
compounds contribute to the majority of the antioxidant activity in plants. Flavonoids, one of the largest 
groups of phenolics, have been discovered to have numerous biological effects such as antibacterial, antiviral, 
antiulcer, antiarthritic, anticancer, and hepatoprotective (Amarowicz and Pegg, 2019). However, its 
antioxidant properties are the most described due to its numerous mechanisms of action (Kumar and Pandey, 
2013). 

A key source of leads in pharmaceuticals is the family Rubiaceae. Numerous members of the Rubiaceae 
family were revealed to have the presence of cardenolides, iridoids, indole alkaloids, terpenoids, flavonoids, and 
anthraquinones, compounds that have been characterized as potential agents for various biological activities, 
most notably regarding their antioxidant properties (Suksungworn and Duangsrisai, 2021). Thus, many are 
widely used in traditional medicine, specifically for their antiplasmodial, antimicrobial, antioxidant, anti-
inflammatory, immunostimulant, and analgesic effects (Heitzman et al., 2005; Karou et al., 2011; Martins and 
Nunez, 2015). Many medically significant compounds have been isolated from Rubiaceae plants. Examples 
include quinine from Cinchona spp., one of the first drugs used against malaria (Achan et al., 2011). Emetine, 
a drug mainly sourced from Psychotria ipecacuanha, has been used for treating amoebiasis (Bleasel and Peterson, 
2020).  It was also shown to have antiviral activity against HIV and Dengue (Yin Low et al., 2009; Valadão et 
al., 2015). Similar antiviral effects were described in cephaeline, an analog of emetine derived from the same 
plant species. Both are implicated in drug design and discovery for Zika virus, Ebola virus, and SARS-CoV-2 
(Yang et al., 2018; Wang et al., 2020; Ren et al., 2022). Their derivatives and other related compounds are being 
investigated for anticancer properties as well (Silva et al., 2022; Peng et al., 2023). Rubiadin, first isolated from 
Rubia cordifolia, is currently being touted as a promising anti-cancer, anti-osteoporotic, hepatoprotective, and 
neuroprotective compound that can be a candidate for drug development (Watroly et al., 2021). Currently, 
there are 550 Rubiaceae species in 80 genera that have been described within the Philippines (Davis et al., 
2009). Despite its rich biodiversity, the Philippine flora is still considered to be grossly understudied, not only 
taxonomically but also in terms of their potential medicinal and pharmacological properties.  

Five Philippine endemic plant species from Ilocos Norte namely Guettardella microphylla (Bartl. ex 
DC.) Merr., Timonius ternifolius (Bartl. ex DC.) Fern.-Vill., Pyrostria triflora Arriola, Calaramo & Alejandro, 
Pyrostria subsessilifolia (Merr.) Arriola & Alejandro, and Psychotria luzoniensis (Cham. & Schltdl.) Fern.-Vill., 
as well as  one indigenous plant species Kanapia monstrosa (A. Rich.) Arriola & Alejandro, were selected for 
antioxidant capacity testing. The four species G. microphylla, T. ternifolius, P. triflora, and K. monstrosa were 
selected based on the initial phytochemical screening (Batuyong et al., 2021). The overall phytochemical 
composition of Rubiaceae plants lends to their potential as sources of bioactive compounds. In particular, a 
common target for collecting and extracting phytochemicals would be plant leaves as these provide a simple, 
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convenient, and reliable method for pharmaceutical and nutraceutical development (Vongsak et al., 2013; 
Rafael et al., 2023). Plant leaves are ideal prospects for ethnopharmacological use and phytochemical profiling 
as these are prolific sources of bioactive compounds, due to the protective role that secondary metabolites such 
as phenolics and flavonoids provide against biotic and abiotic stresses (Abdennacer et al., 2015; Dash et al., 
2017; Chen, 2019; Laoué et al., 2022). Thus, this study aims to investigate the antioxidant capacities of crude 
leaf methanolic extracts derived from Philippine endemic and indigenous Rubiaceae species, namely, G. 
microphylla, P. triflora, P. subsessilifolia, P. luzoniensis, T. ternifolius, & K. monstrosa through assessment of 
their total phenolic and total flavonoid contents, and through antioxidant assays (DPPH, hydrogen peroxide, 
hydroxyl radical, nitric oxide, ABTS scavenging, and FRAP assays) that screen for various antioxidant 
mechanisms of action. 

 
 

Materials and MethodsMaterials and MethodsMaterials and MethodsMaterials and Methods    
 
Plant sampling 

Fresh leaves of G. microphylla, P. triflora, P. subsessilifolia, T. ternifolius, K. monstrosa, and P. luzoniensis 
were collected in Ilocos Norte Province in September 2022. Permits from respective local government units 
(LGU) and the Department of Environment and Natural Resources-Biodiversity Management Bureau 
(DENR-BMB) were secured (Wildlife Gratuitous Permit No. 2022-001). Samples of G. microphylla, P. 
triflora, and P. luzoniensis were acquired from the Metropolitan Ilocos Norte Watershed Forest Reserve 
(MINWFR). P. subsessilifolia was collected from Kalbario-Patapat Natural Park (KPNP), while T. ternifolius 
and K. monstrosa were from Mt. Pao Range. All species were identified based on morphological features, and 
voucher specimens (Table 1) were deposited at the Herbarium of Northwestern Luzon, located at the 
Northwestern University Ecotourism Park and Botanic Gardens (NUEBG). Figure 1 summarizes the 
workflow of experiments on the plant species. 

 
Table 1Table 1Table 1Table 1. Collection information of the Rubiaceae species 

SpeciesSpeciesSpeciesSpecies    HerbariumHerbariumHerbariumHerbarium    − − − − Accession Accession Accession Accession nnnnumberumberumberumber    Collection Collection Collection Collection ssssiteiteiteite    

Guettardella microphyllaGuettardella microphyllaGuettardella microphyllaGuettardella microphylla    HNUL0021179 Brgy. Tadao, Pasuquin 

Kanapia monstrosaKanapia monstrosaKanapia monstrosaKanapia monstrosa    HNUL0021177 Mt. Pao Range, Adams 

Psychotria luzoniensisPsychotria luzoniensisPsychotria luzoniensisPsychotria luzoniensis    HNUL0021180 Brgy. Tadao, Pasuquin 

Pyrostria subsessilifoliaPyrostria subsessilifoliaPyrostria subsessilifoliaPyrostria subsessilifolia    HNUL0021182 KPNP, Pagudpud 

Pyrostria trifloraPyrostria trifloraPyrostria trifloraPyrostria triflora    HNUL0021181 Brgy. Tadao, Pasuquin 

Timonius ternifoliusTimonius ternifoliusTimonius ternifoliusTimonius ternifolius    HNUL0021178 Mt. Pao Range, Adams 

 
Extraction of the plant materials 

Air-dried, ground leaves (approximately 100 g) were soaked in distilled methanol (MeOH) overnight 
and repeated thrice. The combined filtrates were concentrated under reduced pressure to obtain the crude 
MeOH extracts. The extracts were kept in the refrigerator in amber bottles until further use. 

 
Determination of the total phenolic content (TPC) 

TPC was determined based on Shackelford et al. (2009). One mg/mL of each extract and gallic acid as 
standard were dissolved in distilled water, followed by serial dilutions to obtain 1000, 500, 250, 125, 62.5, and 
31.25 ppm sample solutions. For the reagents, 0.5 g of Folin-Ciocalteu (FC) reagent (Sigma-Aldrich®) was 
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dissolved in 5 mL distilled water, and 0.35 g of Na2CO3 was dissolved in 5 mL distilled water. In a 96-well plate, 
50 µL distilled water and 12.5 µL FC reagent were added to 12.5 µL of sample solution, followed by incubation 
for 5 min at room temperature (RT). Then, 125.0 µL Na2CO3 was added to each well and incubated for another 
90 min.  

 

 
Figure 1.Figure 1.Figure 1.Figure 1. Workflow diagram of the experiments conducted starting from extraction, initial and 
antioxidant profiling, and statistical analysis of results 
 
The absorbance was read at 740 nm with a microplate reader (Promega GloMax®). The TPC was 

measured against the gallic acid standard calibration curve and expressed as milligrams per gram of gallic acid 
equivalents (mg GAE/g) of the dry extract. 

 
Determination of the total flavonoid content (TFC) 

TFC was measured based on Aryal et al. (2019) utilizing quercetin as standard. One mg/mL of each 
extract and quercetin were prepared using MeOH, followed by serial dilution to yield 1000, 500, 250, 125, 
62.5, and 31.25 ppm sample solutions. A 0.5 g AlCl3 in 5 mL MeOH and 0.5 g potassium acetate in 5 mL 
distilled water were used as reagents. A 50 µL of the sample solution was measured in a 96-well plate and added 
subsequently with 10 µL of AlCl3, 10 µL potassium acetate, and 200 µL distilled water. The microwell plate 
was then incubated at RT for 30 min. Then, the absorbance was measured against a blank solution at 415 nm 
using a microplate reader (Promega GloMax®). TFC was calculated from the standard curve and expressed as 
milligrams per gram of quercetin equivalents (mg QE/g) of the dry extract. 

 
DPPH free radical scavenging activity  

The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was determined based on 
previous method (Clarke et al., 2013). A 1 mg/mL in dimethyl sulfoxide (DMSO) solution of each plant 
extract and 0.6 mg of a 0.1 mM DPPH solution in MeOH were prepared. The diluted plant extracts (20 µL in 
180 µL DPPH) were placed in a 96-well plate. The plate was incubated for 15 min in the dark at RT and the 
absorbance was read at 540 nm using a microplate reader (Promega GloMax®). Ascorbic acid, quercetin, and 
gallic acid (1 mg/mL) were used as standards. DPPH scavenging activity was calculated using the following 
equation: % DPPH RSA = [(A0 – A1)/A0] x 100, where A0 is the absorbance of the blank (DMSO), and A1 is 
the absorbance of the plant extracts and standards. 
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Hydrogen peroxide scavenging activity 

The hydrogen peroxide scavenging activity (HPA) was evaluated by the method described in Aryal et al. 
(2019). Plant solutions (1 mg/mL), phosphate-buffered saline (PBS) solution (blank, 1 mg/mL), and ascorbic 
acid (standard, 1 mg/mL) were prepared in MeOH. The H2O2 reagent was prepared by dissolving 453.5 µL 
H2O2 in 100 mL PBS (pH 7.4). Fifty microliters (50 µL) of sample solutions were mixed with 100 µL H2O2 
solution in a 96-well plate. After 10 min of incubation, the absorbance was read at λmax 230 nm. The % HPA 
was computed using the following equation: % scavenging of H2O2 = [(A0 – A1)/A0 x 100, where A0 is the 
absorbance of the blank, and A1 is the absorbance of the plant solutions and standard. 

    
Hydroxyl radical scavenging assay 

The hydroxyl radical scavenging assay (HRSA) utilizing 1 mg/mL solution of plant extracts and ascorbic 
acid (standard) in MeOH, 0.75 mM PBS, 0.01% H2O2, 0.75 mM phenanthroline, and 0.75 mM FeSO4 was 
described previously (Lei et al., 2016). In a 96-well plate, 50 µL each of 0.2 mM PBS (pH 7.4) and FeSO4 and 
25 µL each of H2O2 and plant solutions were mixed with 50 µL phenanthroline. The resulting mixture was 
incubated at RT for 10 min followed by absorbance reading at 510 nm. The % hydroxyl radical scavenging 
activity was calculated using the following equation: % HRSA = A1/A2 x 100, where A1 is the absorbance of 
the samples and standards and A2 is the absorbance of the blank. 

    
Nitric oxide scavenging assay 

The nitric oxide scavenging (NOS) activity was assessed following a previous method (Boora et al., 
2014). Sodium nitroprusside (131 mg) and Griess reagent (2 g) dissolved in 50 mL PBS and 1 mg/mL in 
MeOH of the plant extracts and standards (ascorbic acid and gallic acid) were utilized in the assay. In a 96-well 
plate, 50 µL of the sample solutions were mixed with 70 µL sodium nitroprusside. The mixtures were incubated 
for 180 min at 25 °C before the addition of 120 µL Griess reagent. Then, the absorbance at 546 nm was read. 
The percentage inhibition was calculated following the equation: % NO Radical Inhibition = [A0 - A1] / A0 x 
100, where A0 is the absorbance of the control, and A1 is the absorbance of the sample solutions. 

 
ABTS radical cation assay  

The 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging of the plant 
extracts (125-1000 μg/mL) and Trolox standard (62.5-500 μg/mL) was measured as previously described (Re 
et al., 1999). An equal volume of 0.7 mM ABTS and 2.45 mM potassium persulfate were mixed in the dark for 
12 h at RT to generate the ABTS radicals. The sample solutions were mixed with the ABTS radical solution 
and incubated for 30 min in the dark at RT, followed by absorbance measurement at 734 nm. The % ABTS 
radical inhibition was calculated following the equation: % Inhibition of ABTS+∙ = [(A0 – A1)/A0 x 100, where 
A0 is the absorbance of the control, and A1 is the absorbance of the sample solutions. 

 

Ferric reducing antioxidant potential (FRAP) assay 

The FRAP assay of the plant extracts (at 500 and 1000 μg/mL in MeOH) and the butylated 
hydroxytoluene (BHT) standard (at 500 and 1000 μg/mL in MeOH) were measured based on a previously 
described method (Yu et al., 2020). The working FRAP reagents were prepared by dissolving 0.2 M PBS (pH 
7.4), 0.5 g K3Fe(CN)6, 5 g trichloroacetic acid (TCA), and 0.05 g FeCl3  in 50 mL distilled H2O. Sample 
solutions (70 μL) were mixed with 176.5 μL PBS and 176.5 μL K3Fe(CN)6. The mixtures were incubated at 50 
oC for 20 min and subsequently added with 176.5 μL TCA. The resulting mixtures were centrifuged for 10 
min at 650 xg. Then, 273 μL of the supernatant were mixed with 273 μL deionized H2O and 55 μL FeCl3. The 
absorbance was read at 700 nm and the FRAP value was calculated following the equation: FRAP value = [(A1 
– A2)/(A0 – A2)] x 2, where A0 is the absorbance of the positive control, A1 is the absorbance of the plant 
extracts and standards, and A2 is the absorbance of the blank. 
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Statistical analysis 

Data were expressed as mean ± standard deviation. One-way analysis of variance (ANOVA) and Tukey's 
Honest Significant Difference (HSD) were employed to determine significant differences (p ≤ 0.05) using 
GraphPad Prism 9.5.0.  

 
 
Results Results Results Results and Discussionand Discussionand Discussionand Discussion    
 
Phytochemical estimation of the plant extracts 

Estimation of the total phenolics content (TPC) and total flavonoids content (TFC) (Table 2) in the 
plant extracts was done using colorimetric assays. TPC was expressed as milligrams of gallic acid equivalents per 
gram of the dry weight sample (mg GAE/ g DW). TFC was expressed as milligrams of quercetin equivalents 
per gram of the dry weight sample (mg QE/ g DW). 

 
Table 2.Table 2.Table 2.Table 2. Total phenolic and total flavonoid content of crude methanolic extracts 

SpeciesSpeciesSpeciesSpecies    
Total phenolic contentTotal phenolic contentTotal phenolic contentTotal phenolic content    

(mg GAE/g DW)(mg GAE/g DW)(mg GAE/g DW)(mg GAE/g DW)    
Total flavonoid contentTotal flavonoid contentTotal flavonoid contentTotal flavonoid content    

(mg QE/g DW)(mg QE/g DW)(mg QE/g DW)(mg QE/g DW)    

Guettardella Guettardella Guettardella Guettardella microphyllamicrophyllamicrophyllamicrophylla    12.20 ± 0.25a 3.81 ± 0.20a 

Kanapia monstrosaKanapia monstrosaKanapia monstrosaKanapia monstrosa    6.89 ± 0.06b 2.70 ± 0.06b 

Psychotria luzoniensisPsychotria luzoniensisPsychotria luzoniensisPsychotria luzoniensis    16.36 ± 0.87c 3.54 ± 0.23ac 

Pyrostria subsessilifoliaPyrostria subsessilifoliaPyrostria subsessilifoliaPyrostria subsessilifolia    11.25 ± 0.41a 3.43 ± 0.20c 

Pyrostria trifloraPyrostria trifloraPyrostria trifloraPyrostria triflora    17.17 ± 0.83c 1.86 ± 0.04d 

Timonius Timonius Timonius Timonius ternifoliusternifoliusternifoliusternifolius    5.47 ± 0.38b 2.16 ± 0.21d 

Values with different superscripts (a – e) within the same column show significant difference (p ≤ 0.05). Data were 
expressed as mean ± standard deviation, n=5. GAE – gallic acid equivalents; QE – quercetin equivalents. 

 
As shown in Table 2, P. triflora gave the highest TPC (17.17 mg GAE/g DW) and T. ternifolius showed 

the lowest value (5.47 mg GAE/g DW). Comparison of the TPC values also indicated that P. triflora and P. 
luzoniensis; G. microphylla and P. subsessilifolia; and K. monstrosa and T. ternifolius showed statistically 
comparable (p > 0.05) estimation of TPC. Estimation of the TFC indicated non-significant difference (p > 
0.05) in G. microphylla, P. luzoniensis, and P. subsessilifolia. Interestingly, P. triflora had the lowest TFC despite 
having the highest TPC value.  

The identification of phenolics and flavonoids in plants has been highly valued for pharmaceutical and 
medical applications due to their ability to alleviate oxidative stress-induced tissue damage associated with 
chronic diseases (Del Rio et al., 2013; Tungmunnithum et al., 2018). In numerous studies, both TPC and TFC 
are often correlated with antioxidant capacity (Aryal et al., 2019; Liaqat et al., 2021). Phenolic compounds are 
major plant antioxidants acting by scavenging free radicals, chelating metal ions that catalyze ROS formation, 
or stimulating endogenous antioxidant synthesis in cells. Moreover, phenolics are strong natural antioxidants 
generally regarded as safer than their synthetic counterparts (Boora et al., 2014; Zeb, 2020). Flavonoids are 
plant-derived exogenous polyphenolic compounds. The antioxidant mechanisms of flavonoids can be achieved 
by the suppression of ROS formation via interaction with enzyme function; direct scavenging of ROS; and 
chelation of metal ions such as iron and copper to prevent the development of free radicals (Procházková et al., 
2011; Kumar and Pandey, 2013; Amir Aslani and Ghobadi, 2016). 
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DPPH Free Radical Scavenging Activity 

The 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay is used to provide an initial assessment of the radical 
scavenging potential of the test compounds. Antioxidant activity is evaluated using colorimetric analysis, 
wherein a color change from purple to yellow indicates the conversion of the DPPH• radical to DPPH, a more 
stable product, by an antioxidant compound through hydrogen or electron donation (Cornago et al., 2011; 
Khatun et al., 2020; Yu et al., 2020). As shown in Figure 2, P. luzoniensis (96.40 % ± 0.44) demonstrated the 
highest radical scavenging activity and is statistically comparable to the standards (p > 0.05). G. microphylla 
(53.68 % ± 1.01) and T. ternifolius (54.46 % ± 0.30) both showed comparable activities, and were found to be 
moderately active.  

 

 
Figure 2.Figure 2.Figure 2.Figure 2. DPPH radical scavenging activity of the crude plant extracts and standards at 1 mg/mL 
Values with different superscripts (a – e) show significant difference at p < 0.05. Data were expressed as mean ± SD, 
n=5. 

 
The high DPPH radical scavenging activity of P. luzoniensis may be attributed to its identified phenolic 

and flavonoid compounds. Quercetin 3-O-rutinoside, quercetin-3-O-glucopyranoside, kaempferol 3-O-β-D-
apiosyl-(1→2)-β-D-glucopyranoside, asperuloside, and (6S,9R)-roseoside were isolated from leaf ethanolic 
extracts of P. luzoniensis (Ramil et al., 2020). These compounds were previously described to possess 
antioxidant and other important pharmacological properties (Zhang et al., 2004; Choung et al., 2017; 
Fitzpatrick and Woldemariam, 2017; Habtemariam, 2019; Manzione et al., 2020). 

 
Hydrogen peroxide scavenging activity 

The hydrogen peroxide radical scavenging assay measures the capacity of compounds or plant extracts 
to diminish the H2O2 and dissociate it into oxygen and water (Duh et al., 1999; Wettasinghe and Shahidi, 
1999).  In the human body, hydrogen peroxide is a non-radical oxidant that occurs as a by-product of 
biochemical metabolism in cells (Fernando and Soysa, 2015). This compound can be formed through catalysis 
by the enzyme superoxide dismutase (SOD) via a dismutation reaction from superoxide anions. Likewise, H2O2 
can be directly synthesized in the presence of oxidases such as urate oxidase, glucose oxidase, and D-amino acid 
oxidase (Phaniendra et al., 2014; Martemucci et al., 2022). Despite the relatively low reactivity of H2O2, its 
ability to diffuse freely across biological membranes and relatively long half-life are causes for concern. Upon 
interaction with Fe2+ and Cu2+ ions within the cell, it can generate highly reactive hydroxyl radicals through 
the Fenton reaction, which in turn, can induce oxidative stress and cause cellular damage (Ofoedu et al., 2021). 
The overexpression of H2O2 is also shown to be associated with mitochondrial dysfunction, inflammatory 
responses, and certain life-threatening diseases (Singh et al., 2019). 
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As shown in Figure 3, G. microphylla expressed the highest percentage of H2O2 scavenging activity 
(88.56 % ± 4.81) and was significantly higher (p < 0.05) compared to the standard ascorbic acid. The % H2O2 
scavenging activity of K. monstrosa (39.81 % ± 7.90) and P. luzoniensis (53.48 % ± 3.13) were statistically 
comparable to the standard (p > 0.05). P. subsessilifolia (67.11 % ± 5.05), P. triflora (62.11 % ± 4.04) and T. 
ternifolius (75.34 % ± 2.19) all exhibited similar scavenging activity and were significantly higher (p < 0.05) 
compared to the standard. 

 

 
Figure 3.Figure 3.Figure 3.Figure 3. Hydrogen peroxide (H2O2) scavenging activity of the plant extracts and ascorbic acid (standard) 
at 1 mg/mL 
Values with different superscripts (a – c) show significant difference at p < 0.05. Data were expressed as mean ± SD, 
n=5. 

 
Hydroxyl radical scavenging assay  

The hydroxyl radical scavenging assay involves the formation of Fe2+-1,10-phenanthroline complex. In 
the presence of H2O2, Fe2+ is oxidized to Fe3+, and a hydroxyl radical is produced (Treml and Šmejkal, 2016) 
resulting in the reduced formation of the Fe2+-1,10-phenanthroline complex. Upon addition of an antioxidant, 
there is increased formation of Fe2+-1,10-phenanthroline complex due to a decreased production of hydroxyl 
radical and conversion of Fe2+ to Fe3+ (Kim et al., 2020). The hydroxyl radical is considered the strongest 
oxidant and the most reactive free radicals among the ROS. Owing to its extremely short half-life, it 
immediately attacks proteins, DNA, lipids, or any kind of biomolecule it encounters. Results suggest that T. 
ternifolius may potentially be a good source of potent antioxidants that can quench hydroxyl radicals, which 
may be useful in the prevention of lipid peroxidation and other harmful effects of hydroxyl radicals in cells. 

As shown in Figure 4, T. ternifolius had the highest hydroxyl radical scavenging activity (81.28 % ± 4.69) 
and is statistically comparable to the ascorbic acid standard (p > 0.05). P. luzoniensis (62.45 % ± 1.49) showed 
the second-highest hydroxyl radical scavenging activity. G. microphylla (27.81 % ± 11.53), P. subsessilifolia 
(39.26 % ± 1.09), and P. triflora (28.15 % ± 1.88) all exhibited comparable hydroxyl radical scavenging activity. 
K. monstrosa showed the lowest hydroxyl radical scavenging activity at 12.59 % ± 3.42. 
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Figure 4. Figure 4. Figure 4. Figure 4. Hydroxyl radical scavenging activity of the plant extracts and standard at 1 mg/mL 
Values with different superscripts (a – d) show significant difference at p < 0.05. Data were expressed as mean ± SD, 
n=5. 

 
Nitric oxide (NO) scavenging assay 

Under aerobic conditions, NO is unstable and reacts with oxygen to produce the stable nitrite ion (NO2
–

) (Weitzberg et al., 2010). The latter product is estimated using Greiss reagent, which allows colorimetric 
characterization of nitrite concentration (Csonka et al., 2015). In the presence of NO scavengers, NO 
production is inhibited via direct competition with oxygen, which is indicated by a diminished absorbance of 
the formed purple chromophore at 546 nm (Sarwar et al., 2015). Although NO is involved in facilitating 
normal physiological processes in the human body such as neurotransmission, vasodilation, and inflammatory 
reactions, evidence has shown that excessive NO production contributes to oxidative damage (Etim et al., 
2013). Additionally, the involvement of NO in neural processes such as neurotransmitter release, neuronal 
excitability, learning, and memory, implicates its role in the pathogenesis of neurodegenerative disorders 
(Ebrahimzadeh et al., 2010). 

The nitric oxide scavenging activity of the plant extracts was assessed in 250, 500, and 1000 μg/mL 
concentrations (Figure 5). P. luzoniensis demonstrated significantly high nitric oxide scavenging across all three 
concentrations (250-1000 µg/mL), with activity ranging from 93.54 to 98.95% NO scavenging activity. P. 
subsessilifolia, P. triflora, and T. ternifolius had similar activities in the 250-500 µg/mL concentrations. A dose-
dependent NO scavenging activity was observed among the six plant extracts. 

 

 
Figure 5. Figure 5. Figure 5. Figure 5. Nitric oxide scavenging activity of the plant extracts and standards 
Values with different superscripts (a – k) show significant difference at p < 0.05. Data were expressed as mean ± SD, 
n=5. 
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ABTS radical cation assay 

The ABTS antioxidant assay measures the ability of compounds or plant extracts to scavenge the radical 
cation 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+). The antioxidant activity of a potential 
scavenger is determined by its ability to reduce ABTS•+ to ABTS as indicated by the diminished absorbance of 
the pre-formed radical at 734 nm (Karasakal, 2015). Suggested processes potentially involved in the ABTS 
scavenging activity of antioxidants are the hydrogen atom transfer/single electron transfer (HAT/SET) 
reaction mechanism, stepwise electron transfer-proton transfer (ET-PT), and concerted electron-proton 
transfer (CEP) mechanism with water as the proton acceptor (Ilyasov et al., 2020).  

The ABTS radical scavenging activity of the plant extracts was assessed in 125, 250, 500, and 1000 
µg/mL concentrations (Figure 6). Trolox in 62.5, 125, 250, and 500 µg/mL concentrations was used as the 
standard. P. luzoniensis at 1000 µg/mL showed 97.33% ABTS radical scavenging activity and is comparable to 
Trolox at the highest (500 µg/mL) concentration. G. microphylla at 1000 µg/mL showed the second highest 
ABTS radical scavenging activity (52.15 % ± 2.84). Both species had high phenolic contents (Gorinstein et al., 
2003; Rajurkar and Hande, 2011) which are likely to contribute to the elevated ABTS scavenging activities. 
Apart from T. ternifolius, the ABTS radical scavenging activities of all plant extracts are in a dose-dependent 
manner. 

 

 
Figure 6.Figure 6.Figure 6.Figure 6. Free Radical Scavenging by ABTS Radical Assay of the plant extracts and Trolox (standard). 
Values with different superscripts (a – o) show significant difference at p < 0.05. Data were expressed as 
mean ± standard deviation, n=5.  

 

Ferric reducing antioxidant power (FRAP) assay 

FRAP assay measures the antioxidant activity of a compound or plant extracts by donating an electron 
to reduce ferric ions (Fe3+) into ferrous ions (Fe2+) (Yu et al., 2020; Liaqat et al., 2021). Addition of FeCl3 to 
the ferrous form results in the formation of a Prussian blue-colored complex. Thus, reducing power is measured 
by the formation of Prussian blue at 700 nm. Depending on the reducing power of the antioxidant, the sample 
color changes from yellow to green or blue. A higher reducing power is indicated by a higher absorbance value 
(Koksal et al., 2011). 

The ferric reducing antioxidant potentials of the plant extracts were expressed in FRAP values as shown 
in Figure 7. P. luzoniensis showed the highest FRAP values in both 500 µg/mL (1.85 ± 0.08) and 1000 µg/mL 
(2.12 ± 0.13) concentrations. P. triflora also exhibited a comparable FRAP value (1.88 ± 0.06) to the standard 
at 1000 µg/mL. G. microphylla and P. subsessilifolia showed comparable FRAP values at 500 µg/mL. 
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Figure 7.Figure 7.Figure 7.Figure 7. Ferric Reducing Antioxidant Power (FRAP) Assay of the plant extracts using butylated 
hydroxytoluene (BHT) as standard 
Values with different superscripts (a – i) show significant difference at p < 0.05. Data were expressed as mean ± 
standard deviation, n=5.  

 
The plant extracts showed varying levels of antioxidant activities in the assays employed. Results revealed 

that P. triflora had the highest TPC but the lowest TFC. G. microphylla exhibited the highest TFC and 
strongest inhibitory activity against hydrogen peroxide (H2O2). P. luzoniensis manifested the highest 
scavenging activity against DPPH, ABTS radicals, and ferric ions. In contrast, P. subsessilifolia, K. monstrosa, 
and T. ternifolius demonstrated lower levels of scavenging activity in some assays.  This suggests that plant 
species may show good antioxidant potential in specific antioxidant assays, but may perform poorly or 
moderately in others, reflecting the various mechanisms behind the antioxidant activities of bioactive 
compounds present. This may also indicate that compounds present in plant species may respond differently 
to various radicals or oxidants. Hence, plant species showing low antioxidant activity may be subjected to other 
antioxidant assays following a different mechanism. In addition, TPC and TFC may not always be indicative 
of an extract’s antioxidant activity. Factors such as oxidation conditions, nature of the compounds, and 
interactions with other compounds, which may have antagonistic or synergistic effects (Hidalgo et al. 2010), 
should be taken into consideration (Amarowicz et al., 2004; Chaves et al., 2020). 

Furthermore, the use of different concentrations may yield significant descriptive results. 
Concentration-dependent antioxidant capacities and the approximate concentration at which scavenging 
activities are most effectively induced can be further investigated. 
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ConclusionsConclusionsConclusionsConclusions    
 
This study provides a pioneering report on the antioxidant activities of Philippine Rubiaceae species G. 

microphylla, P. triflora, P. subsessilifolia, P. luzoniensis, T. ternifolius, & K. monstrosa. Results revealed that the 
leaf crude methanolic extracts of G. microphylla, P. triflora, P. subsessilifolia, P. luzoniensis, T. ternifolius, & K. 
monstrosa possessed notable antioxidant activities that could impede the overproduction of free radicals. Thus, 
these species could be potential sources of natural antioxidants that may be used in nutraceutical and 
pharmaceutical applications.  
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