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AbstractAbstractAbstractAbstract    
    
This study was conducted to evaluate the antimicrobial activity of metabolites produced by two 

Aspergillus species: A. fumigatiaffinis and A. sclerotiorum, against six bacterial strains and a yeast. An extraction 
of metabolites was carried out using three solvents, after selection of the best solvent, the obtained organic 
extracts were exposed to extreme conditions to test their stability. furthermore, three culture media with 
different compositions were used to select the best medium. The obtained results showed that the two 
Aspergillus species have interesting antimicrobial activity. Chloroform proved to be the best solvent for the 
extraction of bioactive metabolites. Additionally, the stability study showed that the majority of active extracts 
retain their activity after heat treatment (up to 100 °C) and exposure to light. However, the most suitable 
medium for antimicrobial activity was PDB. Molecular docking techniques were employed to explore the 
interactions between secondary metabolites from Aspergillus strains and the gyrase enzyme of Staphylococcus 
aureus, which was further supported by in vitro tests demonstrating strong antimicrobial activity of Aspergillus 
strains extracts against this bacterium. Docking analysis revealed compelling binding affinities of selected 
Aspergillus-derived secondary metabolites to the gyrase enzyme active site, characterized by diverse interaction 
patterns. These interactions offer insights into potential inhibitory effects on the gyrase enzyme, and suggest 
promising avenues for the development of therapeutic interventions against S. aureus infections.  
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docking; secondary metabolites 
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IntroductionIntroductionIntroductionIntroduction    
 
From the beginning until now, humanity has always faced the problem of spreading pathogens 

responsible for a wide range of animal and human diseases, as well as the difficulty of their treatment. Through 
a succession of observation and the work of many researchers including Louis Pasteur, Joseph Joubert, Ernest 
Duchesne, the quest led to the discovery of antibacterial and antifungal substances, since this discovery, 
antimicrobial substances represent a potential source in the pharmaceutical field to treat various diseases 
(Moroh, 2013). The ability of microbes to develop resistance to a wide range of antimicrobial molecules evolves 
gradually over time, nowadays it concerns all pathogenic microbes such as Escherichia coli, Pseudomonas 

aeruginosa, Staphylococcus aureus, Candida albicans, etc. Hence the need to develop new alternatives to fight 
these infections and to control the spread of resistant pathogens (Signoretto et al., 2012). Fungi have a huge 
potential to produce secondary metabolites with a very high antibacterial and antifungal power. These bioactive 
molecules are important actors in the microbial world (Pasqualotto, 2009). Furthermore, Aspergillus species 
are renowned for their ability to produce a wide array of secondary metabolites, many of which exhibit potent 
antimicrobial properties. These bioactive compounds encompass diverse chemical structures and mechanisms 
of action, making them valuable candidates for pharmaceutical development (Pasqualotto, 2009). Specifically, 
compounds such as polyketides, terpenoids, and alkaloids derived from Aspergillus strains have demonstrated 
remarkable efficacy against a spectrum of bacterial and fungal pathogens (Sadorn et al., 2016; Orfali et al., 2021; 
Balasubramaniyam et al., 2023; Zhu et al., 2023). 

Moreover, targeting the gyrase enzyme of Staphylococcus aureus holds significant therapeutic promise 
due to its pivotal role in DNA replication and transcription. Inhibition of gyrase activity disrupts essential 
cellular processes, thereby impairing bacterial viability and proliferation. Given the alarming rise in multidrug-
resistant S. aureus strains, the development of novel agents that specifically target gyrase represents a crucial 
strategy for combating infections caused by this notorious pathogen (Saiki et al., 1999). 

The primary aim of this study was to evaluate the antimicrobial potential of secondary metabolites 
produced by two Aspergillus strains, Aspergillus fumigatiaffinis and Aspergillus sclerotiorum. Additionally, 
molecular docking techniques were employed to investigate the interactions between these secondary 
metabolites and the gyrase enzyme of Staphylococcus aureus, providing insights into their potential as 
therapeutic agents against S. aureus infections. 

 
    
Materials and MethodsMaterials and MethodsMaterials and MethodsMaterials and Methods    
 
Microorganisms  

The two fungal strains used in this work are Aspergillus fumigatiaffinis (MH109540) which was isolated 
from soil taken from an oasis palm grove in the northern region of Laghouat (situated 400 km south of Algiers, 
Algeria) and Aspergillus sclerotiorum (MH109547) which was isolated from a thermal spring floor in Teleghma 
region (located 298 km north-eastern of Algiers). This study is focused on exploring the antimicrobial 
properties of these two fungal strains against six bacterial strains: three Gram positive (Staphylococcus aureus 
ATCC 25923, Bacillus subtilis ATCC 6633 and Enterococcus faecalis), and three Gram negative (Escherichia 
coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Klebsiella pneumoniae), and one fungal strain 
(Candida albicans).  
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Antimicrobial activity determination 

Preparation of suspensions 
This test is performed to determine the antimicrobial activity of the two fungal strains. In physiological 

water, bacterial and fungal suspensions are prepared from viable young colonies that had been previously 
reactivated and then incubated at 37 °C for 24 to 48 hours. The turbidity of the suspensions was adjusted by 
visual comparison with a 0.5 Mc Farland solution (An optical density equal to 0.2 at 650 nm) (Sadrati et al., 
2023). 

 
Agar cylinder technique  
Agar cylinders approximately 6 mm in diameter were cut using a sterile cookie cutter from 14-day-old 

fungal cultures. These were obtained by transplanting the strains on Potato Dextrose Agar (PDA: 200 g of 
potato, 20 g dextrose, 20 g agar and 1000 mL distilled water) medium and incubating at 28 °C. The agar 
cylinders were then placed on Petri dishes containing the Müller Hinton medium (2 g of beef extract, 17.5 g 
acid hydrolysate of casein, 1.5 g starch, 17 g agar and 1000 mL distilled water), previously seeded with the 
bacterial strains, while for the antifungal test, the agar cylinders were placed on Petri dishes containing 
Sabouraud agar (40 g of dextrose, 10 g peptone, 15 g agar and 1000 mL distilled water), previously seeded with 
the C. albicans strain. The dishes were placed at 4 °C for 4 hours and then incubated at 37 °C for 24 hours 
(Boughachiche, 2012). The antimicrobial activity was then determined by measuring the diameters of the 
inhibition zones that appear around the cylinders.  

 
Production and extraction of bioactive molecules by different solvents.  

Eight discs of each seven-days-old culture were placed in 500 mL vials containing 100 mL of Potato 
Dextrose Broth (PDB: 200 g of potato and 20 g dextrose and 1000 mL distilled water) medium. They were 
then incubated at 28 °C for 14 days. After this, the secondary metabolites were then extracted by adding a 
volume of solvent equivalent to that of the medium. Three solvents of different polarities were used: methanol, 
chloroform and cyclohexane. The mixture was homogenized, then the biomass was filtered using a Whatman 
N°1 paper. The resulting mixtures were then placed in a decanting bulb and the organic phase was recovered. 
In addition, the aqueous phase was treated several times, with the solvent to be evaporated at 40 °C using a rota-
vapor (Zerroug, 2011; Ghorri, 2015). The extracts were prepared at a concentration of 100 mg/mL, by 
dissolution in dimethylsulfoxide (DMSO).  

 
Well method 

On Müller Hinton agar seeded with test bacteria aged between 18 to 24 hours and on Sabouraud agar 
seeded with C. albicans, 3 mm diameter wells were perforated with a cookie cutter and 20 µL of each extract 
was added to each well. The dishes were left at room temperature for 30 minutes, and then incubated at 37 °C 
for 24 h (Prabavathy and Valli, 2012; Bramki et al., 2019). Antimicrobial activity was determined by measuring 
the inhibition zone around each well (a clear zone around the well). For each extract, three replicate trials were 
performed against each organism. 

 
Stability test of the extracts 

This test is used to determine the stability of bioactive compounds under different conditions. For this 
purpose, aliquots of 400 μL of active organic extracts were prepared at a concentration of 100 mg/mL and 
separately exposed to different temperatures (50 °C, 70 °C, 100 °C) for 30 min as well as to periods of darkness 
and light (3350 lumen) for 15 days (Boughachiche, 2012). A control of 400 μL of each extract is prepared in 
the same previous way but without treatment. The obtained results from the treated samples were compared 
with those of the controls. The extracts were then tested by the well method.    
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Production and extraction of secondary metabolites from different fermentation media 

In order to select the most suitable medium for the production of secondary metabolites with 
antimicrobial activity, the fermentation is carried out on three different liquid media Czapek Dox (20 g of 
sucrose, 2 g sodium nitrate, 1 g dipotassium phosphate, 0.5 g magnesium sulfate, 0.5 g potassium chloride, 0.01 
g ferrous sulfate and 1000 mL distilled water), Yeast Peptone Dextrose Broth (YPD: 10 g of yeast extract, 20 g 
peptone, 20 g dextrose and 1000 mL distilled water) and PDB in the same way as before (Zerroug, 2011; 
Ghorri, 2015). The extraction of secondary metabolites is done by the solvent that gave the best result. The 
antimicrobial activity test was performed using the same previous method (wells).  

 
Statistical analysis 

All measurements were taken three times for each treatment. Statistical analyses of the data were 
performed using the SPSS (version 25.0) software. The results were analyzed by one-way analysis of variance 
(ANOVA) followed by Tukey HSD post hoc test for multiple comparisons. Differences were considered 
signiKcant at P <0.05. 

 
Investigating secondary metabolite interactions with S. aureus DNA gyrase using molecular docking 

In this study, we employed molecular docking techniques to elucidate the binding interactions between 
secondary metabolites from various Aspergillus strains and the DNA gyrase enzyme (PDB code: 3U2D) of S. 
aureus. The choice of S. aureus for docking analysis was guided by in vitro tests demonstrating the superior 
antimicrobial activity of Aspergillus strains extracts against S. aureus. The gyrase enzyme was selected as a 
therapeutic target due to its vital role in DNA replication, making it an attractive target for novel drug 
development. 

 
Ligands preparation 
The 3D structures of secondary metabolites from Aspergillus strains were obtained from the chemical 

database Pubchem and preprocessed to ensure proper geometries and energy minimization. Ligands were 
prepared using appropriate software tools, including ligand energy minimization and optimization, as required 
by AutoDock Vina. 

 
Receptor preparation 
The crystal structure of the DNA gyrase enzyme (3U2D) was retrieved from PDB database. Prior to 

docking analysis, the protein structure underwent energy minimization, removal of water molecules and non-
essential co-factors, and assignment of atomic charges. 

 
Molecular docking 
Molecular docking was performed using AutoDock Vina (Trott et al., 2010), a widely employed 

molecular docking software. Ligands were docked into the active site of the gyrase enzyme. The grid box was 
defined around the active site, ensuring comprehensive exploration of ligand binding modes. Docking 
parameters were optimized for maximum accuracy and efficiency, including exhaustiveness and search space 
dimensions. 

 
Visualization and analysis 
Docking results were visualized and analyzed using Discovery Studio, providing insights into ligand-

binding conformations, interactions, and binding energies. 3D visualization highlighted ligand binding 
orientations within the active site, while 2D interaction diagrams illustrated specific interactions such as 
hydrogen bonds, hydrophobic interactions, and electrostatic interactions. 
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Results Results Results Results and Discussionand Discussionand Discussionand Discussion    
 
Antimicrobial activity determination 

Antibacterial activity results revealed that A. fumigatiaffinis and A. sclerotiorum acted as excellent 
antibacterial agents against both Gram-positive and Gram-negative bacteria, and against the fungal strain C. 
albicans (Figure 1). 

 

 
Figure 1. Figure 1. Figure 1. Figure 1. Antimicrobial activity in terms of inhibition zone (mm) resulted by testing the two fungal species 
(A. fumigatiaffinis and A. sclerotiorum) against S. aureus, B. subtilis, E. faecalis, E. coli, P. aeruginosa, K. 
pneumoniae and C. albicans using the agar cylinders technique 
Vertical bars represent standard error (n = 3). Bars sharing similar letter(s) are statistically non-signiKcant at p ≤ 0.05 
according to Tukey’s HSD test. 

 
Indeed, the results showed that A. fumigatiaffinis and A. sclerotiorum strains exhibited maximum 

bacterial growth inhibition against S. aureus. Inhibition zones were found to be the following; 25.0 and 17.0 
mm for A. sclerotiorum and A. fumigatiaffinis respectively. Similar patterns were observed in the case of S. 
aureus, B. subtilis, E. faecalis, E. coli, P. aeruginosa, and against the fungal strain C. albicans, where the maximum 
inhibition zone was exhibited by A. sclerotiorum followed by A. fumigatiaffinis. In contrast, both fungal strains 
A. fumigatiaffinis and A. sclerotiorum showed similar inhibition zones against K. pneumoniae. 

In agreement with our results, Al-Shaibani et al. (2013) reported that A. niger had a significant 
inhibitory effect against; P. aeruginosa, S. aureus, S. epidermidis and Bacillus sp. Ruma et al. (2013) found that 
A. fumigatus extract has an important antibacterial activity against Shigella flexneri, B. subtilis, E. coli, K. 
pneumoniae and S. aureus.  Kalyanasundaram et al. (2015) found that A. terreus strain has a good antibacterial 
activity against S. typhi, S. aureus, V. cholera, E. coli, K. pneumoniae, S. paratyphi and K. oxytoca. Padhi et al. 
(2017), showed that A. tubingensis has a remarkable antibacterial activity against B. subtilis, S. aureus, P. 
aeruginosa, P. vulgaris, S. flexneri and K. pneumoniae. As well as Ogbole et al. (2017), revealed that A. tamarii 
has a significant antibacterial activity against a wide range of bacterial strains including S. typhi, S. aureus, B. 
subtilis and E. coli.   

As for test germs, the antibacterial activity against Gram-positive bacteria appears to be more important 
than that against Gram-negative bacteria. This is related to the results obtained by Prabavathy and Valli (2012). 
Indeed, these results can be explained by the presence of an external membrane in gram-negative bacteria that 
make them resistant (Breijyeh et al., 2020). 
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Choice of the best solvent for the extraction of molecules 

The choice of the best extraction solvent depends on the antimicrobial activity of the fungal extracts 
obtained. The results of the well technique (Figure 2) showed that both fungal strains had a good antimicrobial 
activity against five out of seven strains tested; S. aureus, B. subtilis, E. coli, K. pneumoniae and C. albicans. 

 

 
Figure 2. Figure 2. Figure 2. Figure 2. The effect of different solvent extracts on the antimicrobial activity of the two fungal strains (A. 
sclerotiorum and A. fumigatiaffinis) 
Vertical bars represent standard error (n = 3). Bars sharing similar letter(s) are statistically non-signiKcant at p ≤ 0.05 
according to Tukey’s HSD test.    

 
For the A. fumigatiaffinis strain, the highest antibacterial potential was observed by the chloroformic 

and methanolic extracts against the two bacteria S. aureus and B. subtilis, with average inhibition zones 
diameters ranging from 17.0 to 18.0 mm. Followed by the effect of the cyclohexane extract on the same bacteria, 
S. aureus and B. subtilis with diameters of 13.5 and 12.8 mm respectively. However, the strains E. coli and K. 
pneumoniae showed a less important sensitivity towards the three organic extracts with inhibition zones 
ranging between 4.2 to 9.7 mm. Moreover, the three extracts were inactive against the E. faecalis and P. 
aeruginosa tested strains. 

Regarding antifungal activity against C. albicans, the most significant effect was obtained using the 
methanol extract, with an inhibition zone of 16.0 mm in diameter, followed by the chloroform and cyclohexane 
extracts with inhibition zones of 7.2 and 5.8 mm in diameter respectively.  

Concerning the antibacterial activity of the A. sclerotiorum species, the most significant inhibition zones 
were marked by the chloroform extract, especially against B. subtilis and S. aureus bacteria with diameters of 
18.7 and 18.3 mm respectively. K. pneumoniae and E. coli bacteria showed slightly lower sensitivity, with 
inhibition zones ranging from 17.0 and 14.0 mm in diameter. However, both extracts; methanolic and 
cyclohexane demonstrated a relatively weak antibacterial effect against S. aureus, B. subtilis, E. coli, and K. 
pneumoniae bacteria with diameters ranging from 4.3 to 12.0 mm. For the activity against C. albicans, the three 
tested extracts gave a positive result. The greatest antifungal potential was shown by the chloroformic extract 
with an inhibition zone of 23.7 mm in diameter, followed by the methanolic extract with a diameter of 13.5 
mm and the cyclohexane extract with a diameter of 12.3 mm.  

Based on the obtained results, the most effective solvent for the extraction of secondary metabolites with 
antimicrobial activity is chloroform. In second place are methanol extracts, followed by cyclohexane extracts 
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with low activity against most microbial strains. This result is consistent with those of Kitouni (2007) and 
Bramki et al. (2019), who found that chloroform, is among the best solvents used to extract bioactive molecules.  

Organic solvents play an important role in the extraction of bioactive secondary metabolites as raw 
compounds starting from culture media according to their polarity, so secondary metabolites are extracted 
differentially (Kamat et al., 2020; Sadrati et al., 2023).  

Methanol is a highly polar solvent. Chloroform is semi-polar. While cyclohexane is non-polar. From 
this, we can conclude that the obtained extracts contain several secondary metabolites according to their 
polarity. There are various reports according to which the antimicrobial activity depends on the used solvent, 
the structure of compounds found in in the extracts and the studied strain. The raw extracts recovered by 
different organic solvents have different chemical compounds in different quantities and therefore they act 
differentially on microbial strains (Schügerl, 2013; Chaudhari et al., 2014; Padalia and Chanda, 2015; Stancu, 
2016). 

 
 Stability test 

To test the stability of the extracts, these last ones were exposed to unfavorable conditions namely; high 
temperatures, intense light as well as darkness. The results of well method showed that, antimicrobial molecules 
of almost all active extracts kept their activity after treatment (Figures 3, 4, 5, 6, 7 and 8).  

 

 
Figure 3. Figure 3. Figure 3. Figure 3. Antimicrobial effect of chloroformic extract of A. fumigatiaffinis after heat and light treatment 
Vertical bars represent standard error (n = 3). Bars sharing similar letter (s) are statistically non-signiKcant at p ≤ 0.05 
according to Tukey’s HSD test. 
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Figure 4. Figure 4. Figure 4. Figure 4. Antimicrobial effect of methanolic extract of A. fumigatiaffinis after heat and light treatment 
Vertical bars represent standard error (n = 3). Bars sharing similar letter (s) are statistically non-signiKcant at p ≤ 0.05 
according to Tukey’s HSD test. 
 

 
Figure 5. Figure 5. Figure 5. Figure 5. Antimicrobial effect of cyclohexane extract of A. fumigatiaffinis after heat and light treatment 
Vertical bars represent standard error (n = 3). Bars sharing similar letter (s) are statistically non-signiKcant at p ≤ 0.05 
according to Tukey’s HSD test.    
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Figure 6. Figure 6. Figure 6. Figure 6. Antimicrobial effect of chloroformic extract of A. sclerotiorum after heat and light treatment 
Vertical bars represent standard error (n = 3). Bars sharing similar letter (s) are statistically non-signiKcant at p ≤ 0.05 
according to Tukey’s HSD test. 
 

 
Figure 7. Figure 7. Figure 7. Figure 7. Antimicrobial effect of methanolic extract of A. sclerotiorum after heat and light treatment 
Vertical bars represent standard error (n = 3). Bars sharing similar letter (s) are statistically non-signiKcant at p ≤ 0.05 
according to Tukey’s HSD test. 
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Figure 8. Figure 8. Figure 8. Figure 8. Antimicrobial effect of cyclohexane extract of A. sclerotiorum after heat and light treatment 
Vertical bars represent standard error (n = 3). Bars sharing similar letter (s) are statistically non-signiKcant at p ≤ 0.05 
according to Tukey’s HSD test. 
 
For the fungal strain A. fumigatiaffinis, cyclohexane extract lost its activity only against E. coli species 

after treatment at 100 °C, and against K. pneumoniae species after exposure to light and darkness. In addition, 
the chloroformic extract, lost its activity only against E. coli after exposure to 70 °C, 100 °C and light, and 
against K. pneumoniae after exposure to 100 °C, darkness, and light. The methanolic extract of the same fungal 
species retained its antimicrobial activity, except for the S. aureus strain after exposure to light, E. coli strain 
after heat treatment at 100 °C, and K. pneumoniae strain, after exposure to light and darkness (Figures 3, 4 and 
5).   

Regarding the fungal strain A. sclerotiorum, organic extracts show more or less stable activity after 
treatment. For the cyclohexane extract, the antimicrobial potency was remarkably affected especially against B. 
subtilis, E. coli, and K. pneumoniae strains only after exposure to light and darkness. In fact, the chloroformic 
extract showed resistance to the different treatments where the majority of the inhibition diameters values 
recorded being very close to each other for all the test bacteria and almost equivalent to those of the untreated 
extracts. Moreover, the methanolic extract has retained its antimicrobial potential where the diameters of the 
inhibition zones are close to those obtained by the control extract, except for the bacterium S. aureus after 
exposure to light (Figures 6, 7 and 8).   

The study of bioactive molecules stability shows that the majority of active extracts retain their activity 
after heat treatment (up to 100 °C) and exposure to light for two weeks. Which translates to the presence of 
stable molecules in the raw extracts of the studied strains. These results are consistent with those reported by 
Singh et al. (2010), who worked on the thermostability of an A. terricola metabolite and found that it was not 
affected during incubation at 70 °C for 2.5 h. Similarly, Gasparetti et al. (2010), who worked on a metabolite 
of A. oryzae, and showed that it has good thermostability up to 60 °C.    

 
Choice of the optimum medium for the production of bioactive substances 

After selecting the most suitable solvent for the extraction of secondary metabolites, a second 
fermentation was carried out on three liquid media (Czapek Dox, YPD and PDB) to select the most efficient 
culture medium promoting the production of antimicrobial substances. The well technique results show that 
all extracts have the ability to inhibit the growth of at least one test strain. The diameters of the inhibition zones 
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varied from one culture medium to another and from one test bacterium to another. However, both strains, E. 
faecalis and P. aeruginosa showed resistance to all organic extracts (Figure 9).  

 

 
Figure 9. Figure 9. Figure 9. Figure 9. Effect of different culture media on antimicrobial activity of fungal strains 
Vertical bars represent standard error (n = 3). Bars sharing similar letter (s) are statistically non-signiKcant at p ≤ 0.05 
according to Tukey’s HSD test. 

 
For the A. fumigatiaffinis, the highest antibacterial activity was observed by the YPD medium extract 

against B. subtilis with a diameter of 21.5 mm, followed by the effect of extracts from PDB and Czapek-dox 
media against the S. aureus bacterium with diameters of 18.5 mm and 18.2 mm respectively. Then effects of 
the extracts of the PDB medium on B. subtilis with a diameter of 17.0 mm, YPD medium on S. aureus with a 
diameter of 15.8 mm, and Czapek-dox medium on B. subtilis with a diameter of 13.5 mm. In addition, the 
antibacterial potential of all extracts is less important against E. coli, and K. pneumoniae bacteria, where the 
inhibition zones ranged from 4.3 mm to 12.3 mm. On the other hand, only extracts coming from Czapek-dox 
and PDB media showed activity against the yeast C. albicans with diameters of 10.8 mm and 7.3 mm 
respectively.   

For the A. sclerotiorum, the extract from Czapek-dox medium showed a very high antibacterial potential 
against S. aureus with an inhibition diameter of 25.8 mm, followed by an antifungal effect against C. albicans 
with a diameter of 16.2 mm, then a less important effect against B. subtilis, E. coli, and K. pneumoniae bacteria 
with diameters ranging from 5.3 mm to 12.5 mm. In addition, the extract from PDB medium marked an 
important antibacterial activity against the tested strains ranging from 14.0 mm to 18.7 mm, as well as a very 
high antifungal activity against C. albicans with an inhibition zone of 16.5 mm. However, the YPD medium 
extract showed a very low antimicrobial activity with an inhibition zone diameter of 7mm against B. subtilis, 
and 5.5 mm against C. albicans only.   

Based on the previous results, it can be concluded that the most efficient medium for the production of 
secondary metabolites with antimicrobial activity is the PDB medium, with the exception of the A. sclerotiorum 
extract, coming from Czapek-Dox medium, which showed an excellent effect against the S. aureus bacterium. 
Our results can be explained by the fact that fungi have a very high preference for one or more chemical 
compounds of their appropriate medium. Furthermore, the performance of the PDB medium is explained by 
the presence of starch, this slowly metabolizable carbon source is often good for antibiotic production (Awad, 
2005). Based on the obtained results and other literature data, it is clear that the production of bioactive 
secondary metabolites of different fungal species and their antimicrobial potency varies considerably depending 
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on the species and their nutritional status. According to the results of Jawad and Zafar (2017), the chemical 
composition of the culture media (in sources of carbon, nitrogen, phosphorus, sulphur, iron, etc.) is one of the 
most important factors that influence the production of secondary metabolites. In addition, Gesheva et al. 
(2005) mentioned that carbon and nitrogen are the most important components of culture media; the selection 
of their sources and concentrations plays a crucial role in the growth of fungi and in their production of primary 
and secondary metabolites. In addition, Shahid and Nadeem (2015), indicated that sucrose and yeast extract 
were the most favorable sources of carbon and nitrogen for mycelium growth.    

 
Investigating Secondary Metabolite Interactions with S. aureus DNA gyrase using molecular docking  

Molecular docking plays a pivotal role in understanding the interactions between ligands and target 
proteins, thereby aiding in the discovery of potential therapeutic agents. The current study involved an in-
depth molecular docking investigation of the interactions between a selection of secondary metabolites from 
diverse Aspergillus strains and the DNA gyrase enzyme (3U2D) associated with S. aureus. The binding energies, 
along with specific interaction patterns, were meticulously analyzed to unveil potential inhibitory effects of 
these metabolites on the target enzyme.  

The docking results presented in Table 1 demonstrate the interactions between selected secondary 
metabolites from Aspergillus strains and the gyrase enzyme of S. aureus. Notably, these interactions are crucial 
indicators of the potential inhibitory effects of these compounds on the target enzyme. 

 
Table 1. Table 1. Table 1. Table 1. Best docking results of Aspergillus selected secondary metabolites with S. aureus DNA gyrase 
(3U2D) 

CompoundsCompoundsCompoundsCompounds    
Binding Binding Binding Binding 
energy energy energy energy 

(Kcal/mol)(Kcal/mol)(Kcal/mol)(Kcal/mol)    

Hydrogen Hydrogen Hydrogen Hydrogen 
interactions interactions interactions interactions 
(distance Å)(distance Å)(distance Å)(distance Å)    

Hydrophobic Hydrophobic Hydrophobic Hydrophobic 
interactionsinteractionsinteractionsinteractions    

Van der WaalsVan der WaalsVan der WaalsVan der Waals    
InteractionsInteractionsInteractionsInteractions    

Electrostatic Electrostatic Electrostatic Electrostatic 
interactionsinteractionsinteractionsinteractions    

Co-crystallized inhibitor 
4-bromo-5-methyl-N-[1-(3-
nitropyridin-2-yl) piperidin-4-
yl]-1H-pyrrole-2-carboxamide 

-7.5 Glu58, Pro87 
Ile175, Val79, 
Ile51, Asn54, 
Ile86, Pro87 

Arg144, Gly85, 
Sr173, Leu103, 

Asp81, Ile102 

Arg84 

Chaetoglobosin B -9.8 
Asp57, Asn54, 

Asp81 
Ile86 

Pro87, Glu58, Ile102, 
Ser55, Sr173, Ile175, 

Ile51, Leu103 

- 

Butyrolactone I -9.7 
Gly85, Asp81, 

Sr173, Arg84, 
Pro87, Asn54 

Ile51, Ile175, 
Ile102, Ile86 

Leu103, Ser55, 
Gly172, Gly83, Asp57 

Glu58 

Versicolorin -9.5 Asn54 Ile86 (3), Gly85 

Ile102, Gly83, Glu58, 
Arg84, Gly172, Asp81, 

THR173, Ile175, 
Leu103, Ile51, Ser129 

- 

Asperazine -9.2 Asn54 (2) 
Ile51, Leu103, 

Pro87 

Ile175, Ala98, Gln91, 
Ile102, Asp89, 

Arg144, Asp57, Ile86, 
Ser129, Gly85 

Arg84, 
Glu58 

Isoversicolorin C -8.4 Asn54, Sr173 
Ile175, Sr173, 

Ile86 (3) 

Leu103, Ile102, Arg84, 
Glu58, Asp81, Ser55, 

Val79, Ile51 

- 

 
The docking results revealed significant binding affinities of selected secondary metabolites from 

Aspergillus strains with the gyrase enzyme of S. aureus. The observed interactions encompassed hydrogen 
bonding, hydrophobic contacts, and van der Waals forces, collectively contributing to the stability of the 
ligand-protein complexes. Compounds demonstrating potent binding interactions might exhibit inhibitory 
effects on the gyrase enzyme, suggesting potential therapeutic implications against S. aureus infections. 
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Notably, the binding energies demonstrated a range of values, with the most favorable interactions 
revealed by compounds such as chaetoglobosin B and butyrolactone I, displaying binding energies of -9.8 and -
9.7 kcal/mol, respectively. These compounds exhibited intricate networks of hydrogen bonding with key 
residues including Asp57, Asn54, and Asp81, coupled with hydrophobic interactions involving Ile86 and 
various van der Waals contacts (Figures 10 and 11). 

 

 
Figure 10.Figure 10.Figure 10.Figure 10. 3D and 2D interaction model of chaetoglobosin B binding to S. aureus gyrase active site    

 

 
Figure 11.Figure 11.Figure 11.Figure 11. 3D and 2D interaction model of butyrolactone I binding to S. aureus gyrase active site 

 
Similarly, the compound versicolorin exhibited a noteworthy binding energy of -9.5 kcal/mol, 

establishing pivotal hydrogen bonds with Asn54 and significant hydrophobic interactions (Figure 12). The 
interactions with residues Ile86 and Gly85 underscored its potential as a potent gyrase inhibitor. Moreover, 
compounds such as asperazine and isoversicolorin C demonstrated intriguing interactions as well, displaying 
binding energies of -9.2 and -8.4 kcal/mol, respectively. The former displayed multiple hydrogen bonds with 
Asn54 and distinctive hydrophobic interactions, emphasizing its potential as an inhibitory agent (Figure 13).  

The latter, isoversicolorin C, showcased significant hydrophobic interactions with residues Ile175, 
Thr173, and Ile86, suggesting a potential inhibitory role against gyrase (Figure 14).  
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Figure 12.Figure 12.Figure 12.Figure 12. 3D and 2D interaction model of versicolorin binding to S. aureus gyrase active site 

 

 
Figure 13.Figure 13.Figure 13.Figure 13. 3D and 2D interaction model of asperazine binding to S. aureus gyrase active site 

 

 
Figure 14. Figure 14. Figure 14. Figure 14. 3D and 2D interaction model of isoversicolorin C binding to S. aureus gyrase active site 

 
These findings collectively underscore the diverse mechanisms through which secondary metabolites 

from Aspergillus strains interact with the gyrase enzyme of S. aureus. These interactions are indicative of their 
potential as antimicrobial agents, warranting further in-depth experimental validation to confirm their 
inhibitory effects and potential application as novel therapeutic agents against S. aureus infections. 
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ConclusionsConclusionsConclusionsConclusions    
 
The main objective of this work was to evaluate the antimicrobial activity of two fungal species; A. 

fumigatiaffinis and A. sclerotiorum. The results of the demonstration show that these last ones have a 
considerable antimicrobial effect against all tested strains. After the extraction of bioactive molecules, the 
results allowed to qualify chloroform as the most effective solvent. Moreover, the stability study reveals that 
high temperatures as well as darkness and light have no significant impact on the antimicrobial potential of the 
tested extracts. Furthermore, the results of fermentation on different media revealed that the nature of the 
source of carbon, nitrogen, and mineral source of culture media greatly influences the production capacity of 
bioactive metabolites in fungi. Molecular docking provided valuable insights into the interactions between 
Aspergillus-derived secondary metabolites and the gyrase enzyme of S. aureus. The results of this study shed 
light on potential drug candidates for further development and optimization in the quest to combat S. aureus 
infections. Our results elucidated the binding mechanisms between selected secondary metabolites and the 
gyrase enzyme, offering a rational foundation for the discovery of novel therapeutic agents. 
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