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Abstract 
 
The effect of glycine and kolaviron on lipopolysaccharide-induced U937 cell damage and activation of 

U937-derived macrophages was studied. U937 cells were incubated with either glycine or kolaviron or both for 
24 h before exposure to lipopolysaccharide. Cell viability and production of reactive oxygen species (ROS) were 
later assessed. In the other experiment, the U937 cells were transformed to the macrophage form using phorbol 
12-myristate 13-acetate and incubated with or without glycine or kolaviron or both before exposure to 
lipopolysaccharide. Production of TNF-α, IL-1, IL-6 and NO were later assessed. The expression of the 
antioxidant enzymes- superoxide dismutase (SOD) and catalase (CAT) was also evaluated via reverse 
transcription polymerase chain reaction (RT PCR). It revealed that lipopolysaccharide caused significant cell 
death and production of reactive oxygen species that was reduced by glycine and kolaviron. Glycine and 
kolaviron also reduced lipopolysaccharide-mediated secretion of TNF-α, IL-1, IL-6 and NO in U937-derived 
macrophages. In some cases, pre-incubation of cells with both glycine and kolaviron was better than the 
individual responses. Glycine and kolaviron also reduced lipopolysaccharide-induced alterations in the 
expression of SOD and CAT (p<0.05). The study shows that both glycine and kolaviron (either separately or 
in combination) reduced lipopolysaccharide-mediated alterations in U937 cells and U937-derived 
macrophages.  
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Introduction 
 
Lipopolysaccharide (LPS) is an amphipathic molecule located at the outer membrane of Gram-negative 

bacteria. It is made up of a fatty acyl chain attached to a polypeptide up to 200 sugars, some of which bear 
phosphate groups (Okuda et al., 2016). The LPS layer is part of the network that gives the Gram-negative 
bacteria a strong permeability barrier to enable them survive under harsh environmental conditions (Qiao et 
al., 2014; Rios et al., 2016). 

The toxicity of Gram-negative bacteria is mediated largely due to the binding of LPS to specific targets 
of the innate immune system. This activates macrophages and neutrophils and, in the process, pro-
inflammatory factors are elaborated (Huang and Kraus, 2016). This feature of the glycolipid has been used as 
a model for the study of infections and immune responses (Hwang et al., 2011; Rhee, 2014).  
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Glycine is a non-essential amino acid though it has been termed conditionally essential to enhance 
growth in humans and animals (Razak et al., 2017; Li and Wu, 2018). It has been suggested that the amount of 
glycine synthesized in the body may not be sufficient to meet metabolic needs. This simplest amino acid has 
been reported to play significant physiological roles such as anti-inflammatory, cytoprotection and metabolic 
regulation (Jain et al., 2012; Razak et al., 2017).  

Garcinia kola Heckel (Clusiaceae) is an evergreen tree whose seeds are highly valuable and traditionally 
consumed as an antidote against some diseases (Iwu et al., 2009; Esiegwu et al., 2014). One of the important 
compounds isolated from Garcinia kola is kolaviron. Kolaviron is a biflavonoid complex widely reported to 
have various bioactivities in experimental models such as antimicrobial, antioxidant and also the modulation 
of some signaling pathways (Abarikwu, 2015; Adaramoye and Lawal, 2015; Akinmoladun et al., 2015; 
Oyagbemi et al., 2017; Apalowo et al., 2018). 

This work is aimed at investigating the effect of glycine and kolaviron (separately and in combination) 
on LPS-induced toxicity on the proliferation of human monocyte cell line U937 and activation of U937-
derived macrophages. 

 
 

Materials and Methods 
 
Materials 
Glycine, fetal calf serum (heat inactivated), L-glutamine, phorbol 12-myristate 13-acetate (PMA), 

lipopolysaccharide (from E. coli strain 055:B5), dimethyl sulfoxide (DMSO), 3-(4,5-dimethylthiazol-2-yl),-
2,5-diphenyl-tetrazolium bromide (MTT), 2՛,7՛-dichlorodihydrofluorescein diacetate (DCHF-DA) and 
RPMI-1640 were purchased from Sigma-Aldrich (USA). The monocyte cell line U937 was obtained from the 
European Collection of Cell Cultures. All antibodies and biotinylated cytokines were products from 
Pharmingen (US). All other chemicals and reagents were of the highest purity and commercially available. 
Buffers and solutions were prepared using Milli-Q (18 MΩcm-1) water and stored at room temperature unless 
stated otherwise.  

 
Cell culture 
Monocyte U937 cells were grown in RPMI-1640 supplemented with fetal calf serum (heat inactivated), 

penicillin (100 U/L), streptomycin (100 mg/ml) and L-glutamine (2 mM). Cells were kept in an incubator at 
a temperature of 37 °C gassing up to 5% CO2. For differentiation induction (i.e. transformation to the 
macrophage form), the cultured cells were seeded at a density of 5 x 104 cells/ml and supplemented with 
phorbol 12-myristate 13-acetate (PMA) as described (Okoko and Oruambo, 2009).  

 
Extraction of kolaviron 
Fresh Garcinia kola seeds (4.5 kg) were sun-dried, seed coats were removed and later pulverized using a 

warring blender. Kolaviron was isolated from the resulting powder according to Iwu (1985). Briefly, powdered 
seeds were extracted with light petroleum ether (bp 40-60 °C) in a Soxhlet for 24 h. The defatted dried marc 
was repacked and extracted with acetone. The extract was concentrated and diluted twice its volume with water 
and extracted with ethylacetate (6×300 ml). The ethylacetate fraction was concentrated to give a golden yellow 
solid known as kolaviron. Percent recovery was 5.6%. 

 
 
Cytotoxicity and ROS production  
Cell cultures (seeded at 5 x 104 cells/ml) were supplemented with either glycine (300 µM in RPMI-

1640) or kolaviron (25 µg/ml in RPMI-1640) or both for 24 h before exposure to 1 µg/ml lipopolysaccharide 
(LPS). For control experiments, cultures were not supplemented with glycine (GLY) or kolaviron (KVR) but 
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with an equivalent amount of RPMI-1640. One hour later, cell death was determined via MTT assay according 
to the method of Zhou et al. (2006). Briefly, 10 µl of MTT solution was added to each culture to a final 
concentration of 0.5 mg/ml and incubated for 1 h at 37 °C. The MTT was removed and each culture 
supplemented with DMSO (Dimethyl sulfoxide). Absorbance was measured at 570 nm using a microplate 
reader. Values are expressed as percentage of readings of cells not treated with LPS. The production of ROS 
was assessed based on the oxidation of 2՛,7՛-dichlorodihydrofluorescein by intracellular peroxides as reported 

(Koga and Meydani, 2001) with a slight modification. Following the incubation with GLY and KVR for 24 h, 
media was aspirated and replaced with 50 µM DCHF-DA (in RPMI-1640) and incubated for 30 min at 37 °C. 
Cells were later washed with 0.02 M phosphate buffered saline (pH 7.4) and incubated with LPS (1 µg/ml) for 
1 h. Fluorescence of cells was measured at excitation and emission wavelength at 485 nm and 530 nm 
respectively. Final value was expressed as % production of ROS. Production of ROS in cells incubated with 
only LPS was arbitrarily assigned 100%. 

 
Cytokine and NO production 
After 24 h of PMA-induced differentiation, media was aspirated and replaced with GLY or KVR or 

both for 24 h before exposure to LPS (1 µg/ml). The supernatants of each cell culture were analyzed for the 
production of TNF-α, IL-1 and IL-6 via cytokine capture ELISA as described (Okoko and Oruuambo, 2009) 
while nitric oxide production was determined according to Hwang et al. (2002) as modified by Hsieh et al. 
(2007). 

 
Quantitative RT-PCR 
Following PMA-induced induction and subsequent treatment of cells with GLY, KVR and LPS (as 

described previously), total RNA was purified from cell pellets using TRIzol reagent (Invitrogen) and 
quantified by NanoDrop 2000 (Thermo Scientific, Wilmington, DE, USA).  Preparation of cDNA was done 
using a Revert Aid cDNA synthesis kit according to the manufacturer’s protocol. For RT-PCR, 1 µg of the 
resulting cDNA was used to amplify regions specific to superoxide dismutase (SOD) and catalase (CAT) in an 
ABI Prism 7500 system (Applied Biosciences) with primer pairs listed in table 1. The thermal cycler was set at 
an initial denaturation at 95 °C for 5 min and 94 °C for 1 min, annealing at 55 °C for 1 min, elongation at 72 
°C for 1 min (35 cycles) and a final extension step at 72 °C for 10 min. Real-Time PCR data was analyzed and 
presented as fold change in expression over the GAPDH housekeeping gene of same sample. 

 
Table 1. Primer Pairs for RT-PCR 

mRNA Primer sequence (5ʹ-3ʹ) 

SOD 
FP:GACTGAAGGCCTGCATGGATTC 
RP: CACATCGGCCACACCATCTTTG 

CAT 
FP:CTTCGACCCAAGCAACATGC 

RP:GATAATTGGGTCCCAGGCGATG 

GAPDH 
FP:GTCGGAGTCAACGGATTTGGTC 
RP:CTTCCCGTTCTCAGCCTTGAC 

 
Data analysis  
Representative values for various experiments were expressed as mean ± SEM of six replicates. Where 

applicable, data were analysed using analysis of variance followed by Duncan’s multiple range test. Confidence 
exhibited at p<0.05 was considered statistically significant. 
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Results  
 
Cytotoxicity study 
Treating the cells with either glycine or kolaviron (300 µM glycine; 25 µg/ml kolaviron) didn’t cause 

any significant effect on cell viability (data not shown). It has been reported that the reference value of glycine 
in plasma is 120-560 µM (Laposata, 2019) thus 300 µM was used to reflect normal plasma level.  

Figure 1 shows the protective effect of glycine and kolaviron on LPS-induced cell death. It revealed that 
LPS caused significant reduction in cell viability as accessed via MTT assay. However, pre-treatment of the cells 
with glycine or kolaviron significantly reduced LPS-induced cell death (p<0.05). But pre-treatment with both 
glycine and kolaviron was better at reducing cell death than their individual effects (p<0.05). 

 

 
Figure 1. Effect of glycine and kolaviron on lipopolysacharide-induced cell death in U937 cells assessed by 
MTT assay 
LPS, cells treated with 1 µg/ml Lipopolysaccaride only; GLY, cells supplemented with Glycine (300 µM) before 
exposure to Lipopolysaccharide (1 µg/ml); KVR, cells supplemented with Kolaviron (25 µg/ml before exposure to 
Lpopolysaccharide (1 µg/ml); GLY + KVR, Cells supplemented with both Glycine and Kolaviron (300 µM GLY + 25 
µg/ml KVR) before exposure to Lipopolysaccharide. Each bar represents mean ± S.E.M of six replicates expressed as % 
viability in comparison to control. *Significantly different from control; oSignificantly different from LPS and 
xSignificantly different from GLY + KVR. p < 0.05. 

 
Production of reactive oxygen species 
As revealed in figure 2, treating the cells with LPS alone significantly produced reactive oxygen species 

(assessed via DCHF assay) when compared to untreated controls (p<0.05). However, incubating cells with 
glycine and kolaviron before treatment with LPS significantly reduced the production of ROS (p<0.05). But 
the combined pre-treatment of cells with glycine and kolaviron was better at reducing ROS production when 
compared to their separate effects (p<0.05) 

 
Activation of macrophages 
The activation of macrophages was evaluated by measuring the production of the pro-inflammatory 

cytokines (TNF-α, IL-1 and IL-6) and nitric oxide (NO). As shown in Figure 3, the production of the cytokines 
and NO was significant following treatment of the U937-derived macrophages with LPS (p<0.05). Pre-
incubation with glycine and kolaviron significantly reduced the LPS-mediated inductions (p<0.05). Even 
though the pre-treatment with both glycine and kolaviron seem to produce greater reductions than their 
individual responses, the difference was only significant over glycine (p<0.05). 
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Figure 2. Effect of glycine and kolaviron on lipopolysacharide (LPS) -induced production of ROS in U937 
cells 
 LPS, cells treated with 1 µg/ml Lipopolysaccaride only; GLY, cells supplemented with Glycine (300 µM) before 
exposure to Lipopolysaccharide (1 µg/ml); KVR, cells supplemented with Kolaviron (25 µg/ml before exposure to 
Lipopolysaccharide (1 µg/ml); GLY + KVR, Cells supplemented with both Glycine and Kolaviron (300 µM GLY + 
25 µg/ml KVR) before exposure to Lipopolysaccharide. Each bar represents mean ± S.E.M of six replicates expressed 
as % production in comparison to LPS. *Significantly different from control; oSignificantly different from LPS and 
xSignificantly different from GLY + KVR. p < 0.05. 

 

 
Figure 3. Effect of glycine and kolaviron on lipopolysacharide (LPS)-induced production of cytokines and 
nitric oxide (NO) in U937-derived macrophages  
LPS, transformed cells treated with 1 µg/ml Lipopolysaccaride only; GLY, transformed cells supplemented with 
Glycine (300 µM) before exposure to Lipopolysaccharide (1 µg/ml); KVR, transformed cells supplemented with 
Kolaviron (25 µg/ml before exposure to Lipopolysaccharide (1 µg/ml); GLY + KVR, transformed cells supplemented 
with both Glycine and Kolaviron (300 µM GLY + 25 µg/ml KVR) before exposure to Lipopolysaccharide. Each bar 
represents mean ± S.E.M of six replicates expressed as % viability in comparison to LPS. *Significantly different from 
control; oSignificantly different from LPS and xSignificantly different from GLY + KVR. p < 0.05. 
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Effect on antioxidant enzyme expression 
The effect of glycine and kolaviron on LPS-induced enzyme expression was investigated via RT-PCR as 

described. As shown in Figure 4, LPS significantly reduced the expression of superoxide dismutase and catalase, 
however glycine and kolaviron enhanced gene expression closer to control level (Figure 4). The pre-incubation 
with both glycine and kolaviron did not cause any significant change in expression when compared to their 
separate responses (p>0.05).  

 

 
Figure 4. Expression of superoxide dismutase (SOD) and Catalase (CAT) in U937-derived macrophages  
(a) Ratios of intensities of (A) SOD and (B) CAT over housekeeping gene GAPDH for RT-PCR of 
mRNA isolated from U937-derived Macrophages. LPS, transformed cells treated with 1 µg/ml 
Lipopolysaccaride only; GLY, transformed cells Supplemented with Glycine (300 µM) before exposure to 
Lipopolysaccharide (1 µg/ml); KVR, transformed cells supplemented with Kolaviron (25 µg/ml before 
exposure to Lipopolysaccharide (1 µg/ml); GLY + KVR, transformed cells supplemented with both 
Glycine and Kolaviron (300 µM GLY + 25 µg/ml KVR) before exposure to Lipopolysaccharide. Each bar 
represents mean ± S.E.M of six replicates expressed as % Viability in comparison to control. *Significantly 
different from control; oSignificantly different from LPS. p < 0.05. 

 
 
Discussion 
 
The effect of LPS on cell systems range from cytotoxicity to inflammation thus it is used as an effective 

model for the study of bacterial infections (Dou et al., 2017; Huang and Hu, 2017). Although inflammation is 
a defense mechanism cells employ to fight injury, it is associated with some chronic diseases if the response is 
deregulated (Huang and Hu, 2017; Ryu et al., 2018). 
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In the current experiment, LPS caused significant cytotoxicity which was reduced by glycine and 
kolaviron. Both glycine and kolaviron have been reported to be cytoprotective in various models. Mechanisms 
through which glycine protects cells include the inhibition of mitochondrial permeability transition, blocking 
of death channels, interaction of ionophores etc (Nishimura and Lemasters, 2001; Ruiz-Maena et al., 2004; 
Weinberg et al., 2016). Flavonoids (such as kolaviron) protect cells by preventing DNA damage and 
upregulation of detoxifying enzymes and the modulation of intracellular signalling pathways (Okoko, 2018). 

It has been reported that LPS-induced generation of ROS plays a role in the pathogenesis of sepsis and 
inflammation (Liu et al., 2019; Yu and Tan, 2019; Wang et al., 2020), thus we hypothesized that LPS-mediated 
cell death could be linked to the generation of ROS.  

It revealed that LPS caused significant production of ROS that was significantly reduced by glycine and 
kolaviron both separately, and in combination (Figure 2). Oxidative stress is caused by the imbalance between 
the production of ROS and biological antioxidant systems. A major consequence is the modification of 
molecules such as DNA, lipids and proteins which could cause cell death (Lee and Cho, 2009). 

Glycine, the simplest amino acid, is an intricate part of protein structure with primary pharmacological 
activities. It has been found to be cytoprotective via the reduction of ROS produced due to xenobiotics though 
the exact mechanism is not clear (Shafiekhani et al., 2019; Wang et al., 2019).  

Flavonoids suppress the production of reactive oxygen species via direct and indirect modes. They 
neutralize ROS and also induce the up-regulation of glutathione, γ-glutamylcysteine ligase, glutathione S-
transferase and NAD(P)H:quinone oxidoreductase in different cell systems (Chow et al., 2005; Chen et al., 
2006; Angeloni et al., 2007). 

Pro-inflammatory cytokines are released by macrophages in response to infections, injury and stress as 
part of the innate immune response (Aldrich and Sevick-Muraca, 2013). During the inflammatory process, 
cytokines are primary mediators of the immune response but overproduction causes serious damage to host 
cells through the activation of cytotoxic pathways (Lee and Cho, 2009). 

Macrophage activation by bacterial LPS is an important event involved in inflammation and 
inflammation-related disorders and is characterized by the up-regulation of cytokines and production of nitric 
oxide (Speranza et al., 2010; Franceschelli et al., 2014). In this study, LPS stimulated macrophages to produce 
IL-1, IL-6, TNF-α and nitric oxide (NO). Macrophages play a critical role in the initiation, maintenance and 
resolution of infection. However, persistent activation could be cytotoxic as a consequence of the 
overproduction of these intracellular mediators thus the reduction of macrophage-induced cytotoxicity could 
be a therapeutic strategy for inflammatory disorders (Liu et al., 2012). The release of NO could be a 
consequence of oxidative stress. Oxidative stress increases the intracellular level of inducible nitric oxide 
synthase (iNOS) which catalyses the conversion of arginine to NO. This could facilitate the generation of the 
peroxynitrite which is a powerful oxidant (Modlinger et al., 2004; Förstermann et al., 2017). 

This study revealed that both glycine and KVR reduced LPS-mediated production of the cytokines and 
NO thus they could be considered as therapeutic agents for inflammatory disorders. It has been reported that 
glycine activates a ligand-gated chloride channel which hyperpolarizes the membrane which leads to the 
blocking of cytokine synthesis (Wheeler et al., 1999).  

The downregulation of the synthesis of the antioxidant enzymes, SOD and CAT, by LPS also correlates 
with the production of reactive oxygen species which has been reported (Tang et al., 2018; Ye et al., 2019; 
Zhang et al., 2019). Pre-treatment of the U937-derived macrophages with glycine and kolaviron reduced the 
LPS-mediated suppression of antioxidant enzyme expression. This corroborates the indirect antioxidant 
nature of glycine and kolaviron. 
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Conclusions 
 
Both glycine and kolaviron are good at reducing LPS-induced U937 cell death and activation of U937-

derived macrophages. Kolaviron seems to be better than glycine at protecting cells but could depend on the 
concentrations used. In most of the experiments, the use of glycine and kolaviron together gave better 
protection than their separate responses but there was no indication if it was additive or synergistic. The 
experiment reveals that glycine and kolaviron could protect against diseases due to macrophage activation thus 
could be exploited pharmacologically. 
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