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Abstract 
 
In order to investigate the effects of methanol and glycine betaine application on quality traits and yield 

of different fodder beet cultivars, the experiment was performed as a combined split-factorial design based on 
randomized complete block design with 3 replications in two years in Isfahan, Iran. The concentrations of 
methanol in 3 levels (control, 15 and 30% v/v methanol) were considered as the first treatment, the 
concentrations of glycine betaine in 2 levels (control and 4 g per liter) as the second treatment and different 
cultivars (‘Sentinel’, ‘Drafter’, ‘Rivolta’, ‘Elanta’, ‘Rasta’, and ‘Qualita’) were considered as the factorial. Foliar 
spraying was performed at three intervals every two weeks. The results showed that the methanol spraying 
affected on root yield, sugar, potassium and sodium content, catalase enzyme activity, superoxide dismutase, 
rubisco, and malondialdehyde significantly. Glycine betaine foliar application showed significant differences in 
root yield, sugar, potassium and sodium content, enzyme catalase activity, superoxide dismutase, rubisco, and 
malondialdehyde. Based on the results, the utilization of methanol and glycine betaine caused quality 
improvement of the sugar beet under similar conditions of the present experiment. 
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Introduction 
 
Most parts of the world are exposed to drought, and water scarcity is one of the critical issues leading to 

reduced crop yields. Beet cultivars have shown significant differences in terms of yield under different 
environmental conditions, which indicates their adaptability to environmental stresses (Albayrak and Camas, 
2007). Increasing the concentration of carbon dioxide due to reduced light respiration and counteracting the 
destructive effects of environmental stress can improve plant performance by preserving or increasing dry 
matter. One way to increase the concentration of carbon dioxide and reduce the destructive effects of drought 
stress on plants is to apply the alcoholic compounds and glycine betaine (GB) amino acid. Methanol is the 
simplest compound produced in the plant (Felix et al., 2019). Methanol produces carbon dioxide in the leaves 
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and escalates photosynthesis, so it can be used as a carbon source (Saneienejad et al., 2019). Methanol also 
controls the growth and development of plants by affecting the intracellular transport of macromolecules 
(Dorokhov et al., 2018). It has been indicated that when the cotton treated with exogenous methanol, the 
Rubisco activities increased by above 60%, and also the net photosynthesis rate and intercellular CO2 
concentration were increased. Many studies have shown the role of methanol as a biochemical by-product as a 
signal molecule in plant-plant communication, but studies in the last decade have revealed that it has 
participated in metabolic biochemical processes during growth and development. Methanol emissions escalate 
in response to mechanical wounding or other stresses due to damage of the cell wall, which is the main source 
of methanol production. The insoluble compounds of electrical chargeless such as alcohols, aldehydes, and 
sugars easily penetrate and pass-through protoplasmic membranes. Also, methanol passes through by diffusion 
from the membrane of the plant cells (Reinhold and Kaplan, 1984). Under drought stress condition, methanol 
spraying can prevent their biomass reduction (Dorokhov et al., 2018). However, methanol spraying has an 
negative effect on plants that do not have moisture restrictions (Nadali et al., 2010; Rehman and Khalil, 2018).  

The toxicity of methanol solutions may be related to the ability to oxidize it. Methanol in some plants 
could be oxidized, immediately, to CO2, formaldehyde, and formic acid (Fall and Benson, 1996). The 
intermediate formaldehyde represents a reactive electrophilic species with high toxicity that is rapidly 
detoxified by a pathway involving three key enzymes: (1) NAD dependent formaldehyde dehydrogenase 
(FALD), (2) thiolesterase S-formylglutathione (FGH), and (3) NAD-dependent formate dehydrogenase 
(FDH), which oxidizes the formate to CO2 ((Haslam et al., 2002; Kordic et al., 2002; Achkor et al., 2003). 
According to Demmers-Derks et al. (1996), increasing dioxide carbon content will not essentially result in 
increased sugar content in plants, because there is a negative correlation between sugar content and root yield. 
Excessive synthesis of methanol has been observed to lead to the shortening of tobacco (Hasunuma et al., 2004; 
Sheshukova et al., 2017). Therefore, methanol seems to be essential for balance in plant growth and 
development. Methanol application on C3 plants can compensate for part of the photosynthetic carbon losses, 
so increases the efficiency of photosynthesis (McGiffen and Manthey, 1996; Behrouzyar and Yarnia, 2016; 
Rehman and Khalil, 2018). Methanol is oxidized in the form of aldehyde and carbon dioxide in the plant and 
is synthesized as amino acids (serine and methionine) and carbohydrates in various tissues of C3 plants. 
Methanol-treated plants can increase their net assimilation rate (Nonomura and Benson, 1992). Exogenous 
methanol accelerates the production of sugars and amino acids and increases the production of dry matter, leaf 
photosynthesis, grain yield, and also reduces the water use efficiency on the plant (Valizadeh-Kamran et al., 
2019). Increasing the crop growth rate after methanol spraying is due to increasing the concentration of carbon 
dioxide in the leaves and using methanol as a direct source for the synthesis of serine amino acids besides 
reducing carbon loss through light respiration (Dorokhov et al., 2018). Glycine betaine plays an important role 
in regulating cellular osmosis, maintaining organs (mitochondria, chloroplasts), and water efficiency in plants 
under water deficit (Ashraf and Foolad, 2007; Kurepin et al., 2015). The exogenous glycine betaine has been 
proven to improve growth traits and plant performance under drought stress (Khan et al., 2015; Joshi et al., 
2016).  

Nawaz and Wang (2020) report drought stress decreased photosynthetic pigments and increased 
reactive oxygen species, lipid peroxidation, osmolytes, and antioxidants in the plan. Nonetheless, exogenous 
GB alone improved drought tolerance. The maximum decrease in malondialdehyde, and increase in soluble 
sugars, chlorophyll contents, and superoxide dismutase, catalase, peroxidase was recorded when GB was applied 
alone under drought. In many plants, the accumulation of GB is lower than sufficient to modify the adverse 
effects of dehydration caused by various environmental stresses. Exogenous application of GB could help 
diminish the adverse effects of environmental stresses (Mäkelä, 2004; Ashraf and Foolad, 2007). Sprayed GB 
is immediately absorbed by plant tissues and is readily translocated to the roots, meristems, and leaves (Mäkelä 
et al., 2000). Because GB is metabolically quite inert in plants, it remains in the plant cytosol and chloroplasts 
for several weeks (Preedy, 2015). When applied to the leaves of plants, glycine betaine is taken up by leaf tissues 
and roots (Park et al., 2006). The most of the glycine betaine that is taken up by the leaves is localized in the 
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cytosol and only a small fraction of the cytosolic glycine betaine is translocated to chloroplasts (Park et al., 
2006). Glycine betaine was translocated to actively growing and expanding parts of plants, the long-distance 
translocation of glycine betaine being mediated by the phloem (Mäkelä et al., 1996).  

All forms of abiotic stress cause an oxidation reaction in plant cells. However, the presence of glycine 
betaine significantly reduced the production of H2O2 and efflux of K+ ions dose-dependent on against abiotic 
stress (Cuin and Shabala, 2007; Chen and Murata, 2008). Glycine betaine mitigates the damaging effects of 
oxidative stress by activating or stabilizing reactive oxygen species (ROS)-scavenging enzymes and repressing 
the production of reactive oxygen species (Park et al., 2006). The accumulation of glycine betaine in 
chloroplasts and cytosol is effective in tolerating plants to abiotic stress (Wiśniewska et al., 2019). Glycine 
betaine counteracted the inhibitory effect of drought stress by the repair of photosystem II (PSII) (Ohnishi 
and Murata, 2006). Glycine betaine stabilizes and strengthens structures, increases enzymatic activity, and cell 
wall stability in the face of the damaging effects of stress is one of its activities. Therefore, the effect of methanol 
and glycine betaine as reducing agents of drought stress damage on sugar beet was investigated. Koukourikou-
Petridou and Koukounaras (2002) report methanol with glycine treatment increased root length and weight, 
and chlorophyll content. when used methanol alone, lead to achieving similar results as the control. 

 
 

Materials and Methods 
 
Study context 
This experiment was performed as a combined split-factorial design based on randomized complete 

block design with 3 replications in two years (2018 and 2019) in, Isfahan, Iran (32o43'29.8"N 51o50'09.8"E 
with 1543 meters above sea level).  

 
Sampling design and biological material 
The concentrations of methanol in 3 levels (control, 15 and 30% v/v methanol) as the first treatment 

(A), and the concentrations of glycine betaine in 2 levels (control and 4 grams per liter (called 4 g)) as the second 
treatment (B) and 6 cultivars (‘Sentinel’, ‘Drafter’, ‘Rivolta’, ‘Elanta’, ‘Rasta’, and ‘Qualita’) were considered as 
the first factor. Soil texture was silty clay loamy with pH 7.5. At the harvest stage, random sampling of farms 
was done without margin effects.  

 
Qualitative analysis 
The plants were dried at 80 °C to constant weight. The content of Na+ and K+ were determined using 

the flame spectrophotometer (FP640, Shanghai Precision & Scientific Instrument) (Pi et al., 2016). The 
activity of nitrate reductase in leaves was investigated using Nicotinamide adenine dinucleotide (NADH) as a 
hydrogen donor by colorimetry (Zbieć et al., 2003). The activity of catalase enzyme measured catalase (CAT) 
activity was determined by measuring the decomposition rate of H2O2 in 60 s with spectrophotometer at 250 
nm by Darwesh et al. (2018), CAT enzymatic activity was calculated using the system reported by Aebi (1984). 
For measurement of superoxide dismutase (SOD), 1 mL of reaction mixture was prepared in 50 mM K-P buffer 
(pH 7.8) containing 2 μM riboflavin, 75 μM nitrotetrazolium blue (NBT), 100 μM EDTA, 13 mM DL-
methionine and 60 μl of enzyme extract and the absorbance was taken at 560 nm (Stewart and Bewley, 1980). 
Lipid peroxidation was determined by measuring the content of malondialdehyde (MDA) in leaves (Yang et 
al., 2015). 

 
Statistical procedures 
Analysis of variance was performed as a combined split-split factor based on randomized complete block 

design with 3 replications in two experimental years by SAS 9.4 software and Duncan's multiple range tests 
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were used for means comparison. The results of soil at experimental station and the average annual temperature 
of 2018 and 2019 during the study shown in Table 1, and Table 2, respectively.  

 
Table 1. The analysis of pH, texture, organic carbon, nitrogen, phosphor and potassium of soil of study 

pH Texture 
EC 

dS.m-1 

O.C 
(%) 

N 

(%) 
P2O5 

(ppm) 
K2O 

(ppm) 
7.5 SCL 1.01 0.09 9 17.7 650 

 
 
Table 2. The average annual temperature during the years 2018 and 2019 of study 

 Oct-18 Nov-18 Dec-18 Jan-19 Feb-19 Mar-19 Apr-19 May-19 

High Temp 33.8 23 17.2 17.2 22.6 23.6 29 36.2 

Low Temp 8 -2.8 -5.4 -5.6 -8.2 -1.2 4.4 9.6 

Aver Temp 18.8 8.9 6.2 4.5 7.5 10.4 15.6 23.2 

 Oct-19 Nov-19 Dec-19 Jan-20 Feb-20 Mar-20 Apr-20 May-20 

High Temp 33.8 23 16.6 13 22.6 23.6 29 36.2 

Low Temp 8.6 -2.8 -3.4 -5.6 -8.2 -1.2 6 9.6 

Ave Temp 19 7.9 5.9 3.4 8.3 11.2 16.2 23.7 

 
 
Results  
 
Root yield 
The effect of year on root yield was significant at the 1% probability (Table 3). The highest root yield 

was observed in year 2 and the lowest root yield was observed in year 1 (Table 4). Increasing the concentrations 
of glycine betaine by maintaining photosynthetic capacity, and the membrane structure improved plant 
performance (Ma et al., 2007; Cha-um et al., 2019). Similarly, Afshar et al. (2008) reported that glycine betaine 
significantly increased corn yield. The effect of methanol spraying on root yield was significant at the 1% 
probability level (Table 3). The highest root yield was observed in methanol treatment of 30% v/v and the 
lowest root yield was observed in non-methanol application treatment (Table 4). Dorokhov et al. (2018) has 
shown that methanol-treated plants can increase their net photosynthesis and improve performance. It was 
concluded that application of the highest level of methanol spraying, showed 170% increase in the amount of 
the amino acid glycine betaine under drought stress condition. Drought stress increases the proline and glycine 
betaine amino acids in the leaves and increased with the exogenous application of glycine betaine. Also, Iqbal, 
Ashraf (2008) reported that glycine betaine led to an increase in relative water content (RWC) of sunflower 
leaves under water stress. The effect of cultivar on root yield was significant at the 1% probability (Table 3). 
The highest root yield was observed in cultivar treatment 3 and the lowest root yield was observed in ‘Rasta’ 
(Table 4). The effect of foliar application and root yield was significant at the five percent probability (Table 
3). The highest root yield was achieved in year 2 with methanol 15% and glycine betaine 4 g, and the lowest 
root yield was observed in year1 along with the non-application of methanol and glycine betaine (Table 4). 
Kurepin et al. (2019) showed that glycine betaine foliar application treatments increased sugar beet root yield 
compared to the control treatment. The increase in growth and yield of plants was due to the use of anti-stress 
solutions due to their effectiveness as an inhibitor of light respiration (Zbieć et al., 2003; Stepanov et al., 2020). 
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Table 3. Analysis of variance for yield, sugar, potassium, sodium, CAT, SOD, nitrate reductase, rubisco, 
MDA 

 M.S  

S.O.V DF Yield Sugar Potassium Sodium  CAT  SOD  Nitrate reductase RUBISCO  MDA  
Year 1 37897.79** 2084425.09** 64565.49** 13422.84** 23.89** 196.86** 37.45* 12046.8** 18899.66** 
Rep (Year) 4 274.9** 39542.03* 114.95* 13.42* 0.11 0.93* 2.52 86.04* 64.91 
A 2 3815.72** 552236.82** 1205.32** 126.16** 2.11** 19.15** 7.27 1129.46** 2039.46** 
Year*A 2 378.39* 58666.62* 331.83** 56.22** 0.47** 2.41** 10.24 132.89* 459.56** 
Rep* Year*A 8 66.48 5939 18.81 6.9 0.07 0.34 3.77 22.62 31.4 
B 1 5081.26** 626817.64** 1370.35** 151.22** 3.56** 20.81** 2.65 1612.32** 1716.54** 
A*B 2 399.7* 46372.51* 88.26 16.64* 0.16* 1.66* 0.73 112.75* 127.43* 
Year*A*B 3 319.27* 33186.76* 223.84** 36.66** 0.27* 0.72 14.45* 111.25* 21 
Rep* Year*A*B 12 69.38 9487.34 43.34 5.2 0.07 0.38 4.71 27.18 33.77 
C 5 1528.86** 204233.34** 572.88** 63.73** 0.79** 6.93** 13.12* 464.11** 635.3** 
Year*C 5 111.14 12957.42 111.7* 18.98** 0.13* 0.55 4.78 35.97 74.55* 
A*C 10 168.4* 25040.29* 71.68* 10.92* 0.09 0.87* 1.74 53.18* 93.07** 
B*C 5 102.07 15196.35 50.03 4.85 0.05 0.58 2.53 30.27 56.43 
A*B*C 10 86.32 10650.56 43.61 4.1 0.04 0.44 1.63 24.53 39.64 
Year*A*B*C 25 134.32* 18881.84* 56.33* 7.31* 0.1* 0.7* 4.39 42.48* 64.95* 
Error 120 67.49 10101.9 29.45 3.56 0.05 0.32 4.04 21.28 28.19 

* Significant at 0.05 significance, **significant at 0.01. A: Methanol concentration; B: Glycine betaine concentration; 
C: Cultivar 

 
Table 4. Mean comparison of year, methanol and glycine betaine foliar application on yield, sugar, 
potassium, sodium, CAT, SOD, nitrate reductase, rubisco, MDA 

Year 
Yield Sugar Potassium Sodium CAT SOD Nitrate reductase RUBISCO MDA 

(t.ha-1) (mg.g-1 DW) (mg.g-1 DW) (mg.g-1 DW) (u.mg-1pr-1) (u.mg-1 pr-1) (µmol.NO2.g-1 h-1) (µmol.m-2 s-1) (nm.mg-1 pr-1) 
Year 1  47.01b 595.27b 20.94b 5.23b 1.58b 5.65b 9.11b 26.09b 65.29b 
Year 2  73.51a 791.74a 55.52a 21a 2.25a 7.56a 9.95a 41.02a 84a 

Methanol concentration (A) 
0 (Met 0) 51.85b 592.64b 33.71c 11.74c 1.72b 6.01b 9.26a 28.98b 80.78a 
15 (Met 15) 64.46a 737.61a 41.69a 14.39a 2.02a 6.89a 9.46a 35.88a 71.77b 
30 (Met 30) 64.47a 750.26a 39.29b 13.21b 2.01a 6.91a 9.88a 35.8a 71.37b 

Glycine betaine (B) 
0 (Gly 0) 55.41b 639.63b 35.71b 12.28b 1.79b 6.29b 9.42a 30.82b 71.82b 

4 (Gly 4) 65.11a 747.37a 40.75a 13.95a 2.04a 6.91a 9.64a 36.29a 77.46a 
Cultivar (C) 

Sentinel 60.97c 697.97c 38.49b 13.29b 1.91b 6.64b 9.65a 33.83b 74.2b 

Drafter 58.02c 662.74c 37.17b 12.76b 1.89b 6.44b 9.39a 32.38b 76.71b 
Rivolta 68.97a 795.09a 43.33a 14.72a 2.1a 7.17a 9.78a 38.35a 69.51c 
Elanta 58.47c 683.86c 37.34b 12.79b 1.85b 6.5b 10.26a 32.42b 74.75b 
Rasta 50.04d 574.56d 31.74c 10.92c 1.69c 5.91c 8.44b 27.99c 81.42a 
Qualita 65.09b 746.79b 41.29a 14.2a 2.05a 6.95a 9.67a 36.35a 71.27c 

Common letters within each column do not differ significantly 

 
Potassium 
The effect of location on potassium levels was significant at the 1% probability (Table 3). The highest 

amount of potassium was observed in year 2 treatment and the lowest amount of potassium was obtained in 
year 1 treatment (Table 4). Studies by Amin et al. (2013) showed that drought adversely affects the quality of 
sugar beet by increasing impurities such as alpha-amino, nitrogen, sodium, potassium, and reducing the amount 
of sugar that can be extracted. The effect of methanol foliar application of potassium levels was significant at 
the 1% probability level (Table 3). The highest amount of potassium was observed in the treatment of 15% v/v 
methanol and the lowest amount of potassium was observed in the treatment of non-application of methanol 
(Table 4). Sucrose has the ability to replace K+ and Na+ in vacuoles (Cha-um et al., 2019) and during growth, 
the concentrations of sucrose and K+ are inversely related (Hoffmann et al., 2018). Under condition of drought 
stress, the stomata are closed and the stomatal conductance in the leaves and the penetration of CO2 and the 
production of carbohydrates is limited (Hsiao, 2000). However, the results of the experiments of Nadali et al. 
(2010) on sugar beet indicated that sodium, potassium, and nitrogen were not affected by methanol levels, 
which was inconsistent with the results of this experiment. The effect of glycine betaine foliar application 
concentration on potassium levels at the 1% probability level was significant (Table 3). The highest amount of 
potassium in glycine betaine treatment was 4 g, and the lowest amount of potassium was observed in the control 
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treatment (Table 4). Mäck and Hoffmann (2006) showed that glycine betaine, along with potassium, play a 
major role in the osmotic activity of sugar beet. The effect of cultivar on potassium levels was significant at the 
1% probability level (Table 3). The highest amount of potassium was observed in the treatment of ‘Rivolta’ and 
the lowest amount of potassium was observed in the treatment of ‘Rasta’ (Table 4). Hadir et al. (2021) reported 
that a significant difference between the six cultivars evaluated in terms of root potassium. The effect of foliar 
application and potassium content was significant at the 1% probability level (Table 3). The highest potassium 
was observed in the year 2 treatment with 15% methanol and 4 g of glycine betaine and the lowest potassium 
was observed in the year 1 treatment along with non-application of methanol and glycine betaine (Table 5). 

 
Table 5. Mean comparison of interaction between year, methanol and glycine betaine foliar application on 
yield, sugar, potassium, sodium, CAT, SOD, nitrate reductase, rubisco 

Treatment 
Yield Sugar Potassium Sodium CAT SOD 

Nitrate 
reductase 

RUBISCO MDA 

(t.ha-1) (mg.g-1 DW) (mg.g-1 DW) (mg.g-1 DW) (u.mg-1pr-1) (u.mg-1 pr-1) (µmol.NO2.g-1 h-1) (µmol.m-2 s-1) (nm.mg-1 pr-1) 

Year1 Met0 Gly0 36.1g 459.38f 16.19g 4.1g 1.33g 4.81f 8c 20.15g 93.73a 
Year1 Met0 Gly4 38.67g 489.97f 17.69g 4.39fg 1.4g 5.02f 8.94bc 21.39g 91.47a 
Year1 Met15 Gly0 47.59f 598.18e 21.33f 5.27efg 1.56f 5.7e 9.25abc 26.33f 83.21b 

Year1 Met15 Gly4 52f 654.58de 22.75ef 5.71e 1.67f 6.04e 8.81bc 28.85f 79.29c 
Year1 Met30 Gly0 48.83f 626.08de 21.82f 5.45ef 1.65f 5.79e 9.31abc 27.19f 82bc 
Year1 Met30 Gly4 58.9de 743.42b 25.84e 6.45e 1.89e 6.54d 10.38a 32.6e 74.28d 

Year2 Met0 Gly0 62.68de 673.31cd 48.35d 18.34d 1.95e 6.88cd 10.33a 34.96de 70.89de 
Year2 Met0 Gly4 69.97bc 747.9b 52.6c 20.14bc 2.19c 7.32b 9.75ab 39.43bc 67.05f 
Year2 Met15 Gly0 71.51b 758.91b 54.74bc 20.72bc 2.19cd 7.47b 9.23abc 39.74b 65.82f 
Year2 Met15 Gly4 86.74a 938.78a 67.92a 25.84a 2.64a 8.36a 10.55a 48.61a 58.76g 
Year2 Met30 Gly0 65.75cd 721.93bc 51.81cd 19.77c 2.04de 7.11bc 10.4a 36.56cd 69.11ef 
Year2 Met30 Gly4 84.38a 909.59a 57.66b 21.16b 2.47b 8.21a 9.42ab 46.83a 60.1g 

Common letters within each column do not differ significantly 

 
Sodium 
The effect of location on sodium levels was significant at the 1% probability level (Table 3). The highest 

amount of sodium was observed in year 2 treatment and the lowest amount of sodium was observed in year 1 
treatment (Table 4). The effect of methanol foliar application of sodium content was significant at the 1% 
probability level (Table 3). The highest amount of sodium was observed in the treatment of 15% v/v methanol 
and the lowest amount of sodium was observed in the treatment of non-consumption of methanol (Table 4). 
The effect of glycine betaine foliar application concentration on sodium content was significant at the 1% 
probability level (Table 3). The highest amount of sodium in glycine betaine treatment was 4 g and the lowest 
amount of sodium was observed in the control treatment (Table 4). Glycine betaine by regulating the ratio of 
sodium: Potassium is involved in the plant's tolerance to salt. Reza et al. (2006) noted that sodium 
accumulation was significantly increased in aerial parts and wheat roots due to salinity stress, and the use of 
glycine betaine increased sodium accumulation with increasing potassium accumulation. The effect of cultivar 
on the sodium level at the probability level was one percent significant (Table 3). The highest amount of 
sodium was observed in the treatment of ‘Rivolta’ and the lowest amount of sodium was observed in the 
treatment of ‘Rasta’ (Table 4). The effect of foliar application and the amount of sodium on the probability 
level was one percent significant (Table 3).  

 
Catalase activity 
The effect of location on catalase enzyme activity (CAT) was significant at the 1% probability level 

(Table 3). The highest activity of catalase enzyme was observed in year 2 treatment and the lowest activity of 
catalase enzyme was observed in year 1 treatment (Table 4). Branch (2009) reported that plants under drought 
stress have a significant increase in SOD and CAT activity in canola leaves. The different activities of 
antioxidant enzymes in different genotypes can be related to different genetic behaviours to tolerate drought 
stress conditions. The effect of methanol spraying on catalase enzyme activity was significant at the 1% 
probability level (Table 3). The highest activity of catalase enzyme in the treatment of methanol was observed 
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in 15% v/v and the lowest activity of catalase enzyme in the treatment of non-methanol application was 
observed (Table 4). It has been reported an increase of nearly 10 times in the production of catalase enzyme 
was observed on plants under drought stress conditions. The enzyme catalase protects cells against hydrogen 
peroxide and plays an important role in resistance to oxidative stress. Methanol through the absorption of iron, 
which is a prosthetic group of hemoproteins such as catalase, peroxidase, and superoxide dismutase, could be 
involved in the destruction of active oxygen species in plants (Blokhina et al., 2003; Keles and Öncel, 2004). 

The effect of glycine betaine foliar application concentration on catalase activity was significant at the 
1% probability level (Table 3). The highest catalase activity was observed in 4 g glycine betaine treatment and 
the lowest catalase activity was observed in the control treatment (Table 4). Cruz et al. (2013) study mentioned 
that the CAT activities in well-watered plants were not influenced by the glycine betaine exogenous 
application, but in water-stressed plants, the CAT activity significantly increased. The effect of cultivar on 
catalase activity was significant at the 1% probability level (Table 3). The highest catalase activity was observed 
in the treatment of ‘Rivolta’ and the lowest catalase activity was observed in the treatment of ‘Rasta’ (Table 4). 
Prajapat et al. (2018) stated the activity of CAT increased in drought-tolerant cultivars of maize. Besides, Fu 
and Huang (2001) reported that the ability for adaptation to drought stress depended on the maintenance of 
or increases in the capability to detoxify superoxide radical by antioxidant enzymes. The effect of foliar 
application and catalase activity at the level of probability was significant at five percent (Table 3). The highest 
activity of catalase enzyme was observed in the treatment of year 2 with methanol 15 and glycine betaine 4 g, 
and the lowest activity of catalase enzyme was observed in the treatment of year 1 with non-consumption of 
methanol and glycine betaine (Table 5). Plants treated with glycine betaine showed an increase in glycine 
betaine-treated plants exhibited increased levels of photosystem II (PSII) activity compared with control 
plants. Glycine betaine-treated plants had significantly greater catalase activity. This result suggests that glycine 
betaine may enhance the induction of antioxidant mechanisms under abiotic stress conditions. 

 
Superoxide dismutase activity 
The effect of location on the level of superoxide dismutase activity (SOD) was significant at the 1% 

probability level (Table 3). The highest superoxide dismutase activity was observed in year 2 treatment and the 
lowest superoxide dismutase activity dismutase was observed in year1 treatment (Table 4). It has been reported 
that in the absence of stress, the application of methanol did not have a significant effect on the SOD in the 
leaves. However, under stress conditions, methanol levels significantly reduced the activity of this enzyme 
compared to the non-methanol application under stress conditions. The effect of methanol spraying on the 
level of SOD was significant at the 1% probability level (Table 3). The highest SOD in methanol treatment 
was observed to be 30% v/v, and the lowest SOD was observed in the treatment of the non-methanol 
application (Table 4). Application of methanol in different climatic conditions due to the fact that it provides 
more carbon dioxide to the leaves of the plant, the plant is less exposed to adverse environmental conditions 
and as a result, the production of oxygen free radicals is reduced. Due to the reduction in free radicals, the plant 
needs less antioxidant enzymes, However, Romandini et al. (1994) believed that the presence of methanol did 
not affect the enzymatic levels, while the absence of glucose gave higher SOD levels. It has been reported that 
the highest amount of superoxide dismutase enzyme was observed in soybean with 6 units per mg of protein 
under conditions of extreme moisture stress without methanol spraying and increasing the intensity of 
moisture stress increased the production of this enzyme. The effect of glycine betaine foliar application 
concentration on the superoxide dismutase activity was significant at the 1% probability level (Table 3). The 
highest superoxide dismutase activity was observed in 4 g glycine betaine treatment and the lowest superoxide 
dismutase activity was observed in the control treatment (Table 4). The effect of glycine betaine foliar 
application concentration on the superoxide dismutase activity at a probability level of one percent was 
significant (Table 3). The highest superoxide dismutase activity in glycine betaine treatment was 4 g, and the 
lowest superoxide dismutase activity was observed in the control treatment (Table 4). The effect of cultivar on 
the superoxide dismutase activity was significant at the 1% probability level (Table 3). The highest and lowest 
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superoxide dismutase activity was observed in the treatment of ‘Rivolta’ and treatment of ‘Rasta’, respectively 
(Table 4). The reason for the difference in the response of cultivars seems to be related to their genetic 
differences and the process of their different growth. Superoxide dismutase is an antioxidant enzyme that 
catalyzes active superoxide anions and converts them to oxygen and low-activity types of hydrogen peroxide 
(Kumar et al., 2020). According to the results, cultivars that had better yield had higher superoxide dismutase 
activity under stress conditions. The effect of the year and foliar application and cultivar on the superoxide 
dismutase activity was not significant (Table 3). 

 
Nitrate reductase 
The effect of location on the nitrate reductase activity was significant at the five percent probability level 

(Table 3). The highest activity of the reductase nitrate enzyme was observed in year 2 treatment and the lowest 
activity of the reductase nitrate enzyme was observed in year 1 treatment (Table 4). The effect of methanol 
spraying on nitrate reductase activity was not significant (Table 3). According to previous study (Zbieć et al., 
2003), increasing the amount of nitrate reductase during methanol application showed a significant difference 
compared to the control, also methanol increased CGR and nitrate reductase activity on rapeseed. The effect 
of glycine betaine foliar application and also the effect of cultivar on the nitrate reductase activity was not 
significant (Table 3). The effect of foliar application and cultivar on the nitrate reductase activity was 
significant at the 5% probability level (Table 3). The highest nitrate reductase activity was observed in year 2 
treatment with methanol 15% and glycine betaine 4 g and the lowest nitrate reductase activity was observed in 
year 1 treatment along with the non-application of methanol and glycine betaine (Table 3). 

 
Rubisco activity 
The effect of location on rubisco activity was significant at the 1% probability level (Table 3). The 

highest rubisco activity in Year 2 treatment and the lowest rubisco activity in year 1 treatment was achieved 
(Table 4). In the year 1 region, due to higher temperatures and unfavourable environmental conditions the 
sugar beet plant, which is a C3 plant, had more light respiration (Table 3). With increasing light respiratory, 
the rubisco showed a lower level of activity. Cruz et al. (2013) showed that dehydration significantly reduced 
the stomatal conductivity and the ratio of CO2 concentration. In stress-tolerant plants, the rate of net 
assimilation rate decreased with the absence of CO2, which reduced the activity of carboxylase, rubisco, and 
stimulates plant respiration. The effect of methanol spraying on rubisco activity was significant at the 1% 
probability level (Table 3). The highest rubisco activity in methanol treatment was 15% v/v and the lowest 
rubisco activity was observed in the methanol non-application treatment (Table 4). Crafts-Brandner and Law 
(2000) stated that rubisco activity and photosynthesis declined under thermal stress conditions. They reported 
that increased in CO2 reduced rubisco activity on the leaves. Therefore, by increasing the CO2 concentration 
during methanol application, it can be shown that methanol could increase rubisco activity. The effect of 
glycine betaine foliar application on rubisco activity was significant at the 1% probability level (Table 3). The 
highest rubisco activity was observed in glycine betaine 4 g treatment, and the lowest rubisco activity was 
observed in the control treatment (Table 4). glycine betaine application protected chloroplast ultrastructure 
and prevented the decrease of chlorophyll and rubisco activity under salt- and drought-stress conditions 
(Mäkelä et al., 2000). The effect of cultivar on rubisco activity was significant at the 1% probability level (Table 
3). The highest rubisco activity was observed in ‘Rivolta’ and the lowest rubisco activity was observed in ‘Rasta’ 
(Table 4). Studies have shown that there is more inhibition of the rubisco activity in the heat-sensitive cultivar 
than in the tolerant cultivars (Bose and Ghosh, 1995). The effect of the Year and foliar application and cultivar 
on rubisco activity was significant at the probability level of five percent (Table 3). The highest rate of rubisco 
activity was observed in year 2 treatment with 15 mg of methanol and 4 g of glycine betaine, and the lowest 
level of rubisco activity in year 1 treatment was observed with non-methanol and glycine betaine application 
(Table 5). 
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Malondialdehyde concentration 
The effect of location on malondialdehyde concentration (MDA) was significant at the 1% probability 

level (Table 3). The highest malondialdehyde concentration was observed in year 2 treatment and the lowest 
malondialdehyde concentration was observed in year 1 treatment (Table 4). Malondialdehyde is considered a 
good indicator of membrane lipid peroxidation (Grotto et al., 2009). Drought stress increases with the content 
of oxygen free radicals, which increases the content of malondialdehyde to product the membrane 
peroxidation. An examination of the MDA content under a hydroponic cultivation system showed that the 
MDA malondialdehyde concentration in the roots of the two genotypes increased due to increased salinity 
(Chen et al., 2011). The effect of methanol foliar application on malondialdehyde concentration was 
significant at the 1% probability level (Table 3). The highest and lowest malondialdehyde concentration was 
observed in methanol non-application treatment and methanol treatment 30% v/v (Table 4). It has been stated 
that the highest malondialdehyde concentration was observed in conditions of non-methanol application and 
its value decreases significantly with increasing percentage of methanol. The effect of glycine betaine foliar 
application on malondialdehyde concentration was significant at the 1% probability level (Table 3). The 
highest malondialdehyde concentration in glycine betaine treatment was observed at 4 g, and the lowest 
malondialdehyde concentration was observed in the control treatment (Table 4). It has been reported that, 
glycine betaine foliar application in sorghum and canola caused the path of amino acid synthesis changed to 
proline production, so the amount of proline increased with glycine betaine foliar application in the plant 
(Kadkhodaei et al., 2016). The effect of cultivar on malondialdehyde concentration was significant at the 1% 
probability level (Table 3). The highest malondialdehyde concentration was observed in the treatment of Rasta 
and the lowest malondialdehyde concentration was observed in the treatment of ‘Rivolta’ (Table 4). The effect 
of foliar application and cultivar on malondialdehyde concentration was not significant (Table 3). The shoot 
GB concentrations were closely correlated with leaf water potential. Salt-induced GB accumulation in the 
shoot could also contribute to cytoplasmic osmoregulation in beet leaves, and so play an important role in their 
salt tolerance. However, the contribution of GB to achieve osmotic balance in roots varied among genotypes. 
The response of sugar beet, and differed with regard to the accumulation of solutes in the storage root after 
drought stress (Hoffmann, 2014). 

 
 
Conclusions  
 
The effect of year was significant on yield, sugar, potassium, sodium, CAT, SOD, nitrate reductase, 

RUBISCO, and MDA. The effect of methanol spraying on root yield was significant the highest yield was 
observed in methanol treatment of 30% v/v and the lowest root yield was observed in non-methanol 
application treatment. The maximum amount of potassium was observed in the treatment of 15% v/v 
methanol, and the lowest amount of potassium was related to the treatment of non-application of methanol. 
The highest amount of potassium was observed in the treatment of ‘Rivolta’ and the lowest amount of 
potassium was observed in the treatment of ‘Rasta’. Application of 15% methanol and 4 g of glycine betaine 
had obtained the highest potassium content and the minimum one was observed in the year 1 treatment along 
with non-application of methanol and glycine betaine. The highest amount of sodium was observed in the 
treatment of ‘Rivolta’, and the lowest amount of sodium was related to treatment of ‘Rasta’. The impact of 
methanol spraying and glycine betaine foliar application on catalase enzyme activity was meaningful at the 1% 
probability level. The highest activity of catalase enzyme was observed in the treatment of year 2 with methanol 
15 and glycine betaine 4 g, and the lowest activity of catalase enzyme was observed in the treatment of year 1 
with non-consumption of methanol and glycine betaine. The effect of the year and foliar application as well as 
cultivar on the superoxide dismutase was not meaningful. The maximum nitrate reductase activity was 
observed in year 2 treatment along with methanol 15% and glycine betaine 4 g and the lowest nitrate reductase 
activity was related to year 1 treatment along with the non-application of glycine betaine and methanol. The 
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highest malondialdehyde concentration was related to the ‘Rasta’ and the lowest one was observed in the 
treatment of ‘Rivolta’. The impact of foliar application and cultivar on malondialdehyde concentration was 
not significant. Based on the results, the application methanol 15% v/v with glycine betaine 4 g per liter are 
recommended to improve the quality of the sugar beet under similar conditions of the present experiment. 
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