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Abstract 

 

In a greenhouse experiment, the inoculated and uninoculated grains with Azospirillum brasilense NO40 

or Stenotrophomonas maltophilia were sown in unsterilized sandy soil and watered normally till the 8th day. 

Thereafter, the drought stress was initiated by watering pots once every 10 days while the unstressed pots were 
irrigated normally once every 5 days. Samples of spikes and dry grains were collected after 120 days from sowing. 
The results indicated that the inoculated-drought-stressed plants maintained significantly higher values of all 
of the measured yield parameters, where the yielded grains had higher amounts of the direct reducing sugars, 
sucrose, starch; lower contents of total soluble proteins and the total free amino acids, and altered protein 
patterns compared to those of the uninoculated-drought-stressed plants. SDS-PAGE of the yielded grains 
showed that drought led to the appearance of some newly synthesized stress protein bands and disappearance 
of others. Inoculation with PGPB resulted in the re-appearance of some of the disappearing bands and the 
synthesis of new others. Meanwhile, wheat inoculation under normal conditions resulted in significantly 
promoted grain yields with higher contents of carbohydrates, total soluble proteins and total free amino acids 
than that of the uninoculated control. It has been proved that treating wheat plants with the PEG-tolerant 
Azospirillum brasilense NO40 or Stenotrophomonas maltophilia that were compatible with the systems into 

which they were introduced and possess multiple plant growth promoting traits, can be an efficient strategy to 
enhance wheat growth and productivity, not only under normal conditions, but also under drought stress.  

 

Keywords: Azospirillum brasilense NO40; carbohydrate; protein patterns; soluble proteins; 

Stenotrophomonas maltophilia;  Triticum aestivum; wheat; yield criteria 

  
 
Introduction 

 
Wheat (Triticum aestivum L.) is the most important grain crop in Egypt, representing almost 10% of 

the total agricultural production, 20% of all agricultural imports, and more than 60% of the imported grains 
(FAO and EBRD, 2015). Furthermore, Egypt is the world’s largest importer of wheat (FAO and EBRD, 2015; 
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FAS/USDA, 2018). One of the key strategic targets is to sustainably maximize the economic return per unit 
of land and water in general, and for wheat in particular, in order to cope with the food demands of the rapidly 
growing population, that on average, over a quarter of it lives under the poverty line, with hopefully no or with 
minimal expansion in imports, especially with the significant depreciation in the Egyptian Pound against the 
abrupt rise in the world wheat prices (FAO and EBRD, 2015; WFP/EB, 2018). However, achieving this target 
has become more challenging due to the current and aggravating fresh water shortage (FAO, 2015; OED/FAO, 
2018).  

Egypt is a water-poor country where the fresh water resources are limited: fixed quota of Nile water (the 
main source), shallow groundwater reservoirs and small amounts of rainfall (FAO-Aquastat, 2018), with 
projections suggesting that by 2025, Egypt will reach the absolute water scarcity (500 m3/capita/year) (MIWR, 
2014), and by 2050, Egypt will be at sever water stress (Damania et al., 2017). In addition to being limited, the 

water resources are deteriorating: in quality due to the alarming levels of water pollution by the untreated 
sewage, industrial effluents, and agricultural runoff laden with fertilizers (WB, 2017), and in quantity due to 
the heavy consumption by the ever-increasing population, and by the presence of much irrigated agriculture 
(Mekonnen and Hoekstra, 2016), and due to the complicated relationships with the Nile Basin states 
(OED/FAO, 2018). Moreover, the ongoing climate change is predicted to increase the variability and 
uncertainty about the timing and intensity of rainfall, and to elevate temperatures which in turn will lead to 
higher evapotranspiration rates and more crop water requirements (MSEA, 2010; FAO, 2015; WB, 2017). 
Thus, to secure enough wheat for the fast-growing population of Egypt, high yields of wheat must be sustained, 
but with less amounts of water.  

However, the lack of adequate moisture, i.e. drought stress, permanent or temporary, can cause 
significant damage for the plant at any developmental stage, hence, drought has been known as the most 
important limiting factor for crop growth and productivity worldwide (Daryanto et al., 2017). The drought-

induced yield loss varies depending on the plant species, genotype, age and developmental stage; organ or cell 
identity; the stress severity, duration and progression rate; and on the surrounding conditions (De Leonardis 
et al., 2012; Claeys et al., 2014; Ngara and Ndimba, 2014). 

The beneficial soil microbes such as the plant growth promoting bacteria (PGPB) have been welcomed 
as a relatively simple, low-cost, environmentally sustainable solution for improving the crops’ tolerance to 
drought stress, and therefore reducing the drought-mediated yield losses (Singh and Singh, 2013; Ngumbi and 
Kloepper, 2016). PGPB can induce physical and chemical changes in plants that result in enhanced tolerance 
to abiotic stress; these changes have been termed induced systemic tolerance (IST) by Yang et al. (2009).  

In our previous study (Omar et al., 2017) two PGPB (Azospirillum brasilense NO40 and 

Stenotrophomonas maltophilia) were selected as promising candidates for enhancing the drought tolerance of 
wheat plants, because both of them were able to fix atmospheric nitrogen and to maintain high growth at 
different PEG6000 concentrations (up to 30%). In our subsequent study, they enhanced the growth of wheat 
seedlings under drought stress (17 days of ceasing irrigation) and induced significant recovery (10 days of 
reirrigation) for the seedlings represented by higher fresh and dry masses, water contents and survival (Salama, 
2019). Similarly, Omar et al. (2017) found that these microbes: 1) tolerated PEG concentrations up to 50%; 
2) possessed multi plant growth promoting traits (N2 fixation, ACC-deaminase activity, P-solubilization and 
production of HCN, ammonia, and phytohormones (IAA, GA and ABA)); 3) maintained these traits in PEG-
containing cultures; and 4) enhanced the growth of wheat seedlings growing in vitro, in a sterilized system 

(spermosphere model) under normal and PEG-stressed conditions.  
The objective of the current study was to determine whether the positive impact of these PGPB will last 

till the yield stage or not? And if yes, how far these strains can diminish the drought-induced loss in wheat yield?  
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Materials and Methods 

 
Plant material  

Grains of wheat (Triticum aestivum L.) cultivar ‘Gemiza9’ (G9) were obtained from the Wheat 

Department, Field Crops Research Institute, Agriculture Research Center (ARC), Giza, Egypt. ‘Gemiza9’ is a 
relatively drought-sensitive, but high-yielding, rust-resistant and wide-cultivating cultivar (El-Shami et al., 

2000). 
 
Microorganisms 

The used PGPB were Azospirillum brasilense NO40 (B1) and Stenotrophomonas maltophilia (B2) 

isolated from rice (Omar et al., 1989) and wheat rhizosphere (Omar et al., 2017), respectively. They were 

allowed to grow in nutrient broth for 24 h at 28 °C with shaking, thereafter, the culture turbidity was adjusted 
to 0.3 ~ 108 CFU/ml (using the spectrophotometer at 600 nm) to be used either for grain coating or liquid 
inoculation. For the grain coating, 30 ml of each culture was taken to inoculate bags of vermiculite carrier (50 
g/bag) and incubated for 24 h, while for the liquid the fresh cultures were mixed with the irrigation water 20 
ml/pot immediately after sowing, on the 8th day from sowing (just prior of drought initiation), after two 
months and after three months from sowing.  

 
Plant growth and treatments  

The experiment was conducted at the Experimental Green house of Wheat Department, Field Crops 
Research Inst., (ARC), Giza, Egypt, using sandy soil obtained from the Agricultural Research Station, Ismailia, 
ARC, Giza, Egypt. Its characters and composition are illustrated in Table 1. The wheat grains were selected for 
apparent uniformity of shape and size, surface- sterilized by HgCl2 0.1% for 5 minutes and rinsed 5 times with 
sterile tap water. Then, the grains were mixed with the inoculated carrier bags and Arabian gum solution on 
clean plastic sheets and left to be air dried for one hour in shadow before sowing. For the uninoculated 
treatments, a clean nutrient broth was added instead.  

The experiment included 6 treatments × 8 replica as follows: 1) Cont. = unstressed-uninoculated 
control, 2) B1 = unstressed and inoculated with A. brasilense NO40, 3) B2 = unstressed and inoculated with S. 

maltophilia, 4) D = drought-stressed-uninoculated, 5) DB1 = drought-stressed and inoculated with A. 

brasilense NO40 and 6) DB2 = drought-stressed and inoculated with S.  maltophilia.  

Seven inoculated or uninoculated grains were sown per pot (25 cm height × 30 cm diameter containing 
9 kg of soil) and were reduced to 5 plants/ pot after one month from sowing. The pots were left to grow at 20 
± 2 °C in a relative humidity of 65% and 16 h photoperiod at 450 μmol m-2 s-1 light intensity and watered with 
70% of soil field capacity (SFC) a day after day till the 8th day. Up to this point, the drought stress was initiated 
by watering pots once every 10 days while the unstressed pots were irrigated normally once every 5 days. The 
mineral fertilizer (N, P and K) was applied according to the recommendations of the Egyptian Ministry of 
Agriculture.  

 
Table 1. Some chemical and physical characteristics of the soil 

pH 
EC 

(dS/m) 
Structure  

% 
Mineral composition 

(mg/ Kg soil) 

7.72 0.50 
Sand Silt Clay N P K Fe Mn Zn Cu 
89.4 7.60 3.00 15.10 4.85 60.80 5.30 0.92 0.48 0.05 

 
Sampling and parameters  

Samples were collected after 120 days from sowing. Firstly, some productivity criteria were determined 
such as the percentage of spike formation/pot, spike weight (g), percentage of grain filling/plant, weight of 
grains/plant (g) and weight of 100 grains (g). Thereafter, the carbohydrate contents of the yielded grains were 
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estimated quantitatively using the methods described by Nelson (1944) and modified by Naguib (1963), while 
the contents of the total soluble proteins (TSPs) and the total free amino acids (TFAAs) were determined 
according to Bradford (1976) and Lee and Takahashi (1966), respectively.  Moreover, the protein pattern of 
the yielded grains was studied using one dimensional Sodium- Dodecyl Sulphate Poly Acrylamide Gel 
Electrophoresis (SDS-PAGE) as described by Laemmli (1970). The gel bands’ scanning was analyzed by the 
Gel Documentation System which determines molecular mass (MM) in kDa of each polypeptide band in 
relation to a standard marker (M) using Gel Proanalyzer version 3 Media Cybernetics Imaging Exports 
software (Gel Doc. 2001 BioRad System). 

 
Statistical analysis 

All analytical determinations were replicated at least three times and the presented data are the mean 
values. The obtained results were subjected to one analysis of variance ANOVA analysis to determine the 
significance between treatments using CoStat software (CoHort software, California, USA, 1998). 

 
 
Results  

 
Yield criteria 

The results show that drought stress caused significant reductions in the percentage of spike formation, 
weight of spike, percentage of grain filling, weight of grains per spike and weight of 100 grains (Table 2). Clearly, 
the reductions were greater in the uninoculated- drought-stressed plants (D) than in the A. brasilense NO40 

or S. maltophilia -inoculated-stressed ones. The percentages of spike formation and grain filling of the drought-

stressed plants were raised by both strains to 99 and to ≥ 76%, compared with 86 and 47%, respectively in the 
uninoculated-stressed treatment (D). Also, the inoculated-drought-stressed plants had higher weights of spikes 
by about 2 folds of their uninoculated counterpart (treatment D). Due to the drought stress, the weight of 
grains per spike was declined by 76% in respect to the well-irrigated control; however, this decline was 
significantly controlled to only 24% in case of inoculation with A. brasilense NO40 and to 44% in the plants 

which were treated with S. maltophilia. Similarly, the weight of 100 grains was notably increased in the stressed-

inoculated plants with the two PGPB by 67% than in the uninoculated-stressed ones (D). Moreover, the 
inoculation with A. brasilense NO40 significantly promoted the percentage of grain filling by 6%, the weight 
of spike by 23%, the weight of grain /spike by 22% and the weight of 100 grains by 10% under normal 
conditions than that of the uninoculated control.  

 
Table 2. Effect of bacterial inoculation with A. brasilense NO40 (B1) and S. maltophilia (B2) on the yield 

criteria of Triticum aestivum (cv. ‘G9’) plants grown in sandy soil, under unstressed (irrigated every 5 days) 

and drought-stressed (irrigated every 10 days) conditions. Treatments means of 3 sets, each set contained 
3 replicas (± SD). Cont. = the unstressed-uninoculated treatment; D=drought-stressed-uninoculated 
treatment, B (1-2) = the unstressed-inoculated treatments and DB (1-2) = the drought stressed-inoculated 
treatments. 

Treatment 
% spike formation/ 

pot 
Spike weight 

(g) 
% grain 

filling /plant 
Grains weight/ 

spike (g) 
Weight of 100 

grains (g) 
Control 100±0.0a 0.53±0.01b 89±2.3a 0.37±0.02b 2.9±0.06b 

B1 100±0.0a 0.65±0.02a 96±1.7a 0.45±0.01a 3.2±0.07a 
B2 100±0.0a 0.57±0.02ab 94±1.6a 0.39±0.01b 3.0±0.04ab 
D 86±3.1b 0.18±0.01d 47±2.6c 0.09±0.01e 1.5±0.02d 

DB1 99±1.7a 0.36±0.06c 79±2.5b 0.28±0.01c 2.5±0.20c 
DB2 99±1.7a 0.38±0.05c 76±5.2b 0.21±0.02d 2.5±0.20c 
Note: Treatments with identical letters are not significant at P ≤ 0.01 

The carbohydrate content of the yielded grains 
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The obtained results revealed that drought stress significantly affected the contents of carbohydrates in 
the yielded grains of wheat, where it significantly raised the amounts of the direct reducing sugars and sucrose 
while it notably reduced the starch content of the grains in the uninoculated and inoculated-stressed treatments 
(Figure 1). In response to drought stress, the direct reducing sugars were increased by 1.8-fold in the 
uninoculated treatment (D), and by 3.2 and 2.6 folds in the B1- and B2- treated-stressed plants, respectively, in 
respect to the uninoculated-unstressed control. The sucrose content of the grains was elevated by 77% in the 
uninoculated-drought-stressed treatment (D), but the highest amount of sucrose was recorded in the grains of 
the drought-stressed plants inoculated with A. brasilense NO40 (DB1) that were about twice of that in the 

uninoculated-well-irrigated control. In contrast, the amount of starch in the grains was significantly decreased 
under stress; where the lowest accumulation of starch was recorded in the uninoculated treatment (D) which 
was 223 mg/g DM. Meanwhile, the inoculation of the plants with B1 and B2 notably enhanced the starch 
content of grains under stress by 48 and 32%, respectively, then that of the uninoculated-stressed counterparts 
(D). Under the well irrigation conditions, the bacterial inoculation increased the carbohydrate contents of 
grain; as the highest amount of the direct reducing sugars was obtained in the grains of S. maltophilia-treated 

plants (23 mg/ g DM), while treating plants with A. brasilense NO40 induced the maximum accumulation of 

sucrose and starch which were 222 and 530 mg/g DM, respectively, compared with 18, 150 and 417 mg/g DM 
respectively, in their uninoculated counterparts. 

 

 
Figure 1. Effect of bacterial inoculation with A. brasilense NO40 (B1) and S. maltophilia (B2) on the 

contents of total reducing sugars (DRV) (A), sucrose (B) and starch (C) (mg/ g DM) of the yielded-grains 
of Triticum aestivum (cv. G9) plants grown in sandy soil, under unstressed (irrigated every 5 days) and 

drought-stressed (irrigated every 10 days) conditions. Error bars represent the standard deviation between 
3 replicas. Treatments with identical letters are not significant at P ≤ 0.01. Cont. = the unstressed-
uninoculated control; D= the drought-stressed-uninoculated treatment, B (1-2)= the unstressed-
inoculated treatments and DB(1-2) = the drought-stressed -inoculated treatments 

The contents of the total soluble proteins and total free amino acids of the yielded grains 
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Generally, the drought stress significantly increased the contents of both of TSPs and TFAAs in the 
yielded grains of all treatments (Figure 2). The largest increases of TSPs and TFAAs were recorded in the grains 
of the uninoculated-drought-stressed treatment (D) which were 2.3 and 4.6-fold of that of the well-irrigated 
control, respectively. Whereas, the yielded grains of the plants treated with B1 and B2 had lower accumulation 
of TSPs and TFAAs under stress by about 30 and ≥ 35%, respectively than the uninoculated counterpart (D). 
However, inoculating the unstressed plants with both PGPB slightly raised the amount of total soluble proteins 
to 42 mg/g DM compared with 35 mg/g DM in the uninoculated counterpart. Both bacterial strains notably 
increased the content of the total free amino acids in the grains of wheat plants. Among the unstressed 
treatments, the highest content of the TFAA was recorded in the S. maltophilia-treated plants which were 41% 

higher than that of the uninoculated control.   
 

 
Figure 2. Effect of bacterial inoculation with A. brasilense NO40 (B1) and S. maltophilia (B2) on the 

contents of total soluble proteins (A) and total free amino acids (B) (mg/ g DM) of the yielded-grains of 
Triticum aestivum (cv. G9) plants grown in sandy soil, under unstressed (irrigated every 5 days) and 

drought-stressed (irrigated every 10 days) conditions. Error bars represent the standard deviation between 
3 replicas. Treatments with identical letters are not significant at P ≤ 0.01. Cont. = the unstressed-
uninoculated control; D= the drought-stressed-uninoculated treatment, B (1-2) = the unstressed-
inoculated treatments and DB (1-2) = the drought-stressed -inoculated treatments 
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Protein patterns of the yielded grains  

The molecular masses (MM) of protein patterns shown in Table 3 provide the expression of the effects 
of drought stress and the inoculation with B1 and B2 in the yielded grains of wheat. 

 
Table 3. Changes revealed by SDS-PAGE in protein patterns of the yielded-grains of Triticum aestivum 

(cv. ‘G9’) plants grown in sandy soil, under unstressed (irrigated every 5 days) and drought stressed 
(irrigated every 10 days) conditions without and with inoculation with A. brasilense NO40 (B1) and S. 

maltophilia (B2) 

M (Kd) MM(Kd) Control B1 B2 D DB1 DB2 
250  -- -- -- -- -- -- 

 139 + + + -- -- -- 
133 -- -- -- + -- -- 

130 130 -- -- -- -- +  

 

129 -- -- -- -- -- + 
94 + -- -- -- -- -- 
91 -- + -- -- -- -- 
90 -- -- -- -- -- + 
89 -- -- + -- -- -- 
88 -- -- -- + -- -- 
87 -- -- -- -- + -- 

95  -- -- -- -- -- -- 
72  -- -- -- -- -- -- 

 

71 -- -- -- -- -- + 
70 -- -- -- + + -- 
69 -- + + -- -- -- 
62 + -- -- -- -- -- 
59 -- -- -- -- -- + 
56 -- -- -- + + -- 

55 55 -- + -- -- -- -- 

 

54 -- -- + -- -- -- 
51 + -- -- -- -- -- 
47 -- -- -- -- -- + 
46 -- -- + + + -- 
45 -- + -- -- -- + 
44 -- -- -- + -- -- 
43 + -- -- -- + -- 
42 -- + + -- -- -- 
41 -- -- -- -- -- + 
40 -- + + + + -- 
38 + -- -- --  + 
37 -- + + + +  

36 36 -- -- -- -- -- + 

 33 -- -- + -- -- -- 
32 -- + -- + + + 

28  -- -- -- -- --  

 
23 -- -- -- -- -- + 
22 -- -- + + -- -- 
20 -- + -- -- -- -- 

M= marker; MM = molecular mass; += present, -- = absent; Cont. = the unstressed and uninoculated control; D= 
the drought stressed and uninoculated treatment, B (1-2) = the unstressed and inoculated treatments and DB(1-2) = 
the drought stressed and inoculated treatments 
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Data revealed the following:  
1)Drought stress induced synthesis of five new proteins bands with MM 133, 88, 70, 56 and 44 in the 

stressed-uninoculated grains which were not detected in the control or in all of the inoculated-drought stressed 
seedlings, except for the protein bands with MM 70 and 56 that were also appeared in the grains of DB1 
treatment.  

2)Drought induced the disappearance of six polypeptides having MM of 139, 94, 62, 51, 43 and 38 KDa, 
which were detected in the control. The inoculation returned some of them, as the bands with MM 43 and 38 
KDa which reappeared in the DB1 and DB2 treatments, respectively 

3)On the other hand, the bacterial inoculation not only relieved the deleterious impact of drought stress 
through the re-appearance of some bands which disappeared under drought stress, but also by the induction of 
newly synthesized bands, such as: the bands with MM 130 and 87 KDa in DB1 and 129, 90, 71, 59, 47, 41, 36 
and 23 kDa in DB2 treatments which were undetected in the control or in the corresponding uninoculated-
drought-stressed counterparts.  

4) Under normal conditions, the bacterial inoculation resulted in newly synthesized proteins as the 
bands with MM 91, 55 and 20 KDa appeared only in A. brasilense NO40- inoculated plants and the bands with 

MM 89, 54, and 33 appeared only in S. maltophilia-treated plants, while the bands have MM 69 and 42 KDa 

appeared with both microbes. 
 
 
Discussion 

 
Crop yield is the final outcome of complexly interrelated crop growth and development processes 

strongly affected by water availability (Farooq et al., 2009; Fahad et al., 2017). The results showed that the 

drought stress resulted in harsh effect on wheat yield as indicated from the significant reductions in the all 
measured criteria of yield (spike formation%, weight of spike, grain filling%, weight of grains/spike and weight 
of 100 grains). These results are in conformity with those obtained by Darkwa et al. (2016) on Vicia faba. The 

drought-mediated decline in crop yields can be ascribed to various factors, especially those mainly determining 
the source and sink capacity (Blum, 2011; Wang et al., 2017). This reduction in yield parameters under drought 

stress may be due to the premature leaf senescence, oxidation of chloroplast lipids and alterations in the 
assembly of pigments and proteins, leading to lowering the supply of carbon assimilate, reduced photosynthetic 
rate and consequently minimal biomass production, as well as diminished translocation of assimilates towards 
the developing seeds (Abid et al., 2016; Kasim et al., 2017). Wang et al. (2017) conducted a meta-analysis of 

303 papers published before May 2015 studying the effects of drought stress on the morpho-physiological and 
biochemical characteristics, growth and biomass partitioning, and yield formation of diploid, tetraploid, and 
hexaploid wheat. This analysis indicated that the yield losses from drought stress significantly correlated to: 1) 
the reduction in the leaf area (as a key driver), the whole-plant assimilation rate, and leaf chl-a and b; 2) arrest 
in organs’ differentiation and/or dysfunction of the differentiated reproductive organs (e.g. the number of 
flowers can be reduced by arrested differentiation or by abortion and deterioration of developed flowers under 
stress, while the declined number of grains developed from a given number of flowers can be a result of the 
stress-induced sterility of female or male organs, abortion of embryos (Blum, 2011) and/or the decrease of the 
endosperm cell number and metabolic activity; and greatly to 3) the disturbance in the resources’ allocation 
and reallocation patterns.  

The present study also reveals that the yielded grains under drought stress had lower content of starch 
and higher contents of the reducing sugars, sucrose, the total soluble proteins (TSPs) and the total free amino 
acids (TFAAs) in addition to having altered protein patterns than those of the unstressed plants. These results 
agreed with those of Qudsia et al. (2013) for maize. The total soluble protein content of the yielded seeds in 
the present results revealed a highly significant increase with drought, which was similar to the trend previously 
obtained in the vegetative stage reported by Kasim et al. (2017). This increase may be due to the induction of 
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stress proteins, which are particularly involved in the maintenance of cell redox and might act as antioxidant 
enzymes (Shu et al., 2012). 

Drought can often cause significant metabolism alteration in plants, for instance, the altered 
carbohydrates contents (reduced starch and increased sugars) which can be a result of: 1) declined starch 
production due to the reduced assimilate supply or the altered activities of the biosynthetic enzymes; or 2) 
enhanced starch degradation to sugars, as sugars can act as signaling and regulatory molecules; energy and 
carbon building blocks of protective proteins and compounds; and as compatible solutes, osmotic spacers, and 
ROS scavengers in order to increase cell turgor and to protect  sensitive membranes and proteins (Thitisaksakul 
et al., 2012; Dong and Beckles, 2019). Likewise, the increased levels of the free amino acids could be a result of 
diminished synthesis or increased breakdown of specific proteins, while other proteins (namely stress-induced 
proteins) may be induced or up-regulated (Farooq et al., 2009; Aslam et al., 2015; Ghatak et al., 2017).  

On the other hand, treating wheat plants with A. brasilense NO40 or S. maltophila under drought stress 

significantly enhanced almost all their measured yield parameters, where the yielded grains had significantly 
higher contents of carbohydrates (the direct reducing sugars, sucrose and starch); lower amounts of total 
soluble proteins and the total free amino acids; and altered protein patterns compared with the uninoculated 
stressed treatments. Furthermore, under normal conditions, inoculating wheat plants with PGPB resulted in 
significantly improved yields with higher contents of carbohydrates, than those of the uninoculated control. 
These results agreed with those of Askary et al. (2009) and of Creus et al. (2004) who stated that even in stress 

conditions, Azospirillum inoculation increased the grain yield and mineral nutrition in plants under stress. 

Five of the Heat Shock Protein families (HSPs) with MM ranging between 250 kDa and 15 kDa with 
roles to play in combating abiotic stresses in plants are represented in our study. Thus, the protein bands with 
MM 133 kDa may function as HSP 100 which play a crucial role in re-solubilizing protein aggregates via 
interactions with the sHSP chaperone system (Bosl et al., 2006). The protein band with MM 88 kDa, may 

function as HSP 90 and regulates protein folding and plays a key role in signal transduction networks, protein 
degradation and protein trafficking (Park and Seo, 2015). The protein band with MM 70 kDa, belongs to HSP 

70 and acts as a chaperone for newly synthesized proteins to prohibit their accumulation as aggregates as well 
as to maintain proper protein folding through their transfer to their final location (Park and Seo, 2015). The 

protein bands with MM 56 kDa are members of the HSP 60 family which help in protein folding and subunit 
assembly (Efeoglu, 2009). The protein bands with MM 44 kDa of the HSP40 family are known to induce 
HSP70 affinity for clients (Kampinga and Craig, 2010). 

Taken together our previous studies in which Azospirillum brasilense NO40 and Stenotrophomonas 

maltophilia had enhanced the growth and performance of wheat seedlings under drought stress (Kasim et al., 

2013; Omar et al., 2017) with the current results, we can assume that the uninoculated wheat plants showed a 

relatively low degree of drought tolerance, and may have favored survival over growth by maintaining highly 
activated defenses that had resulted in high deleterious effect on growth and productivity, unlike the inoculated 
plants that showed a relatively higher degree of drought tolerance by which they were able to deactivate the 
growth inhibition to some extent while maintaining a certain level of efficient protection against damage, 
which finally translated into higher yields under drought stress. 

The augmented yield production and crop quality under both normal irrigation and drought stress 
conditions was reported in many plants treated with PGPB (Ngumbi and Kloepper, 2016; Etesami and 
Maheshwari, 2018). For instance, Treating plants with PGPB has been reported to: 1) induce favorable 
alterations in root growth and architecture (longer roots, longer and denser lateral roots and higher biomasses) 
(Naseem and Bano, 2014; Timmusk et al., 2014); 2) improve shoot growth (higher shoots and heavier 

biomasses) (Kasim et al., 2013; Grover et al., 2014); 3) maintain relatively higher relative water contents than 

the drought-stressed and bacterially-untreated plants (Sandhya et al., 2010; Naveed et al., 2014; Naseem and 

Bano, 2014); 4) facilitate water and nutrient (e.g. Fe, P and N) acquisition (Desai et al., 2012; Ngumbi and 

Kloepper, 2016); 5) modulate the plant hormones levels either by synthesizing phytohormones or by lowering 
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the plant-produced ethylene via the ACC-deaminase activity (Castillo et al., 2013; Bresson et al., 2013; 

Ngumbi and Kloepper, 2016); 6) stabilize membranes (Gusain et al., 2015); and 7) regulate each of expression 

of some drought-triggered genes (Kasim et al., 2013; Sarma and Saikia, 2014), production of osmolytes (Bano 

et al., 2013; Gururani et al., 2013), and activities of different enzymes (Kohler et al., 2008) resulting in 

promoted plant growth and productivity under drought stress (Vurukonda et al., 2016; Forni et al., 2017). 

Moreover, inoculating the salt-stressed barely with A. brasilense NO40 significantly ameliorated the adverse 

effect of salinity on growth and yield (Omar et al., 2009), but no available studies illustrating the role of S. 

maltophila in augmenting crop yields under abiotic stressed conditions. 

However, the exact mechanisms by which the selected PGPB maintained and integrated their multiple 
plant growth traits to achieve their positive impact on the overall performance of wheat plants under drought 
stress remain largely speculative (Ngumbi and Kloepper, 2016; Forni et al., 2017). However, it is known that 

the PGPB have the ability to induce systemic tolerance by triggering several physical and chemical changes in 
plants that result in enhanced tolerance to abiotic stresses (Yang et al., 2009). One or both of the following 

explanations can be postulated to explain the way in which this tolerance was attained in the present study:   
1) The first explanation is that: priming and coating wheat grains with PGPB might have induced 

acclimation. It has been shown that certain beneficial microbes can pose some biotic stress on plant, that in 
turn activate the plant defensive metabolism before the stress onset, resulting in better or more rapidly mount 
defense responses, or both, to biotic or abiotic stress “ the plant primed state” (Conrath et al., 2006; Rajendra-

Prasad et al., 2016). The previous results of the less activated defenses (Salama, 2019) may imply that PGPB 

application enhanced the adaptation responses, rather than their direct activation as is the case in acclimation 
treatments in which plants are gradually exposed to an increasing stress situation. It is worth-noting that the 
less activated defenses may suggest that the inoculated plants were able to avoid the heavy consumption of 
resources for defense, and therefore maintained better growth and here better yield than the uninoculated 
plants.  

2) The second explanation is that: the introduced PGPB might have earlier sensed the imposed stress 
and responded to it, because they are small, in intimate contact with soil water, and have semipermeable 
membranes (Schimel et al., 2007), and accordingly, they might have affected the plant metabolism. For 

instance, it is known that soil microbes have the ability to influence rhizodeposition, not only respond to it 
(Phillips et al., 2004). Likewise, it can be assumed that somehow the introduced PGPB could have provided 

some kind of early warning to the plant to be prepared to cope well with the imposed stress. This can be 
supported by the ability of both microbes to produce ABA and the possibility of being able to produce or trigger 
other alarming volatiles or compounds. 
 

 
Conclusions 

 
It seems reasonable to conclude that treating wheat plants with the PEG-tolerant Azospirillum brasilense 

NO40 or Stenotrophomonas maltophilia which possess multiple plant growth promoting traits and were 

compatible with systems into which they were introduced, can offer a promising, feasible and sustainable 
strategy to enhance wheat growth and productivity, not only under normal conditions, but also under drought 
stress.  Accordingly, it is strongly recommended that farmers and agriculture companies in Egypt inoculate 
wheat grains and plants with such PGPB as Azospirillum brasilense NO40 and S. maltophilia as a means of 

combating drought stress. In practice, Azospirillum brasilense NO40 is already available and licensed by the 

Egyptian Ministry of Agriculture for inoculating wheat cultivated under drought stress conditions in sandy 
soils. 
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