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Abstract 

Zilla spinosa is one of the dominated woody perennial shrubs widespread in the Egyptian Red sea coastal desert, belonging 
to family Brassicacea. Z. spinosa is used as a folk medicine and for heating by local people. Z. spinosa inhabits arid habitats 
exposed to adverse climatic changes which influence the production of the bioactive natural products. The natural secondary 
products have significant importance for plant acclimatization to the arid habitats beside their significant practical application 
in medicinal, nutritive and industrial purposes. The accumulation levels of some natural products including phenols, tannins, 
glucosinolates, flavonoids, saponins, proanthocyanidins and cardiac glycosides were measured in Z. spinosa inhabiting different 
locations of Wadi Hagul during spring and summer seasons. The results of the current study showed that Z. spinosa grown in 
the adverse environment has adapted to cope with extreme temperature, water deficit and geoclimate changes especially in 
summer, by enhancing the accumulation of some antioxidant compounds including phenols, tannins, glucosinolates, 
flavonoids, saponins, cardiac glycosides, concomitant with increments in the total antioxidant capacity and PAL activity. 
Consequently, Z. spinosa shrubs inhabiting the arid environment is a promising new source of saponins, glucosinolates, cardiac 
glycosides, phenols and flavonoids which could participate in drug development and exploration of alternative strategies to 
increase productivity of wild plants. 
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Introduction 

Wadis are the most prevalent ecosystems in the world 
mountainous deserts (Fossati et al., 1999).  The wadi system 
such as wadi Hagul comprises various habitats (Abdel 
Rahman and Batanouny, 1965). Vegetation in the wadi is 
frequently subjected to adverse seasonal climatic changes 
that negatively affected their setting up, growth and 
development, as well as canopy level. Water supply is the 
most prominent factor that can influence plant metabolism 
and anabolism (Akıncı, 1997). Generally, water deficit 
stimulates the production of reactive oxygen species (ROS) 
in plants, which causes damage in membrane lipids, nucleic 
acids, proteins, pigments (Noctor et al., 2014), and 
consequently disturb the normal metabolic activities of 
plants.  

Plants cope with the environmental adverse effects by 
modulating the production and accumulation of a number 

of secondary metabolites. Environmental stressors increased 
secondary metabolites production and accumulation on the 
expense of primary metabolites and growth. Therefore, 
alterations in the local geoclimate and seasonal changes 
including light, temperature and humidity affect the 
composition of secondary metabolites (Ramakrishna and 
Ravishankar, 2011). Secondary metabolites including 
phenolic compounds, saponins, alkaloids and other 
nitrogenous compounds are sometimes participating in 
plant defense strategies against various stresses 
(Ramakrishna and Ravishankar, 2011). Wahid and Close 
(2007) reported that phenolics significantly contributed in 
abiotic stress tolerance as they serve as antioxidants 
(Balasundram et al., 2006). The exposure to either cold or 
heat stresses promote overproduction of phenolic 
compounds in wheat plants (Khattab et al., 2012). Similarly, 
drought stress stimulated the production and accumulation 
of total phenols and flavonoids in different plant species 
(Emam et al. 2014; Al Hassan et al., 2015). The quantitative 
and qualitative variations in flavonoid content of 
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the climate of the wadi area has been described as arid to 
extremely arid (Zahran, 2010).  

 
Climate of the study area 
Climatic means of Suez metrological station were 

studied; the nearest station to wadi Hagul had been 
measured during the period between 2010-2014 to throw 
light on the climatic conditions prevailing in the surveyed 
wadi (Table 1). The climatic condition of the study areas 
was of the arid type, with mild winter temperatures. January 
was the coldest month, while July and August were the 
hottest ones. The relatively highest amount of annual 
rainfall was recorded during April, whereas the highest 
relative humidity value was recorded during December. 
Moreover, the maximum wind velocity was measured 
during October.  

 
Plant material 
Z. spinosa shrubs with similar age and size were collected 

from three main sectors (upstream, midstream and 
downstream) of wadi Hagul from spring (April) til summer 
(July) seasons, depending on the vegetative organ under 
study. 

 
Extraction and determination of secondary metabolites 
Extraction 
Aerial parts and the root system of Z. spinosa were 

collected from wadi Hagul, in April (the flowering stage) 
and June (fruiting stage), after drying under shade for 15 
days, were ground to a powder. The dried powder (100 g) 
was extracted with distilled water or ethyl alcohol, methyl 
alcohol, petroleum ether, ethyl acetate at 4 °C. After 72 hr, 
the extracts were filtered and the filtrates were concentrated 
on rotary evaporator under reduced pressure at 30 °C. 
Then, the crude concentrated extracts were completed to 
final volume with water (30 ml) and then subjected to 
phytochemical analysis (Harborne, 1973). The qualitative 
phytochemical analysis was carried out to determine the 
suitable solvent for the maximum quantitative estimation of 
secondary metabolites. 

Flavoparmelia caperata (L.) Hale and Physcia dubia 
(Hoffm.) Lettau plants were also recognized depending on 
growth stage, degree of senescence, season and geographical 
location (Chaves et al., 2003). 

In addition, the production and accumulation of 
saponins in plants is affected by the environmental 
conditions including light, temperature, humidity, soil 
fertility, local geoclimate and seasonal changes, as well as 
cultivation techniques. A positive correlation between 
saponins concentrations and abiotic stresses was observed 
(De Costa et al., 2013). It was indicated that the increment 
in the synthesis of saponins in response to stresses, might be 
an indicator for their involvement in plant tolerance under 
sever stressful conditions (Lin et al., 2009; Szakiel et al., 
2011; Mahmood et al., 2014). 

Furthermore, glucosinolates are secondary metabolites 
which occurred in family Brassicaceae (Fahey et al., 2001; 
Wittstock and Halkier, 2002). The accumulation of 
glucosinolates is regulated by plant development and tissue 
type ( Reichelt et al., 2002; Brown et al., 2003) as 
environmental stresses (Bidart-Bouzat et al., 2005; Kim and 
Jander, 2007; Wentzell and Kliebensteinm, 2008). The 
induction of glucosinolates accumulation by drought 
conditions has been reported by Schreiner et al. (2009). The 
glucosinolate content of different plant species generally 
increased under drought and temperature stress conditions 
(Radovich et al., 2005; Schreiner et al. 2009; Justen and 
Fritz, 2013; Charron et al., 2005).            

The synthesis and accumulation of secondary 
metabolites in plants is influenced by environmental 
conditions, such as light intensity, soil minerals, drought, 
salinity and seasonality (Waterman an d Mole, 1989). 
Hydric stress usually induced the accumulation of various 
secondary metabolites including glycosides (Gouvea et al., 
2012). Moreover, Sahin et al. (2013) reported that 
cardenolide production significantly increased in Digitalis 
plants exposed to some nutrient deficiency.   

The seasonal fluctuations in the natural secondary 
metabolites in Zilla plants inhabiting the arid environment 
are not clear. Thus, the present study aimed to elucidate the 
suitable environment for greater natural products 
accumulation. Simultaneously, it was of interest to interpret 
the ecophysiological roles of natural secondary metabolites 
in this distinct desert plant adaptive strategy. Moreover, the 
natural variation in the levels of secondary metabolites may 
explore the ecological-plant interactions with their 
environment and may help in providing alternative 
strategies to increase productivity of wild plants utilized in 
drug and food industries. 

 

Materials and Methods  

Study area 
Wadi Hagul is an extensive wadi occupying the valley 

depression between Gebel Ataqa to the North and Gebel 
Kahaliya to the South, Egypt. Its main channel extends for 
about 35 Km and collects drainage water on both sides. 
With reference to the vegetation and geological features of 
wadi Hagul, three main sectors may be distinguished, 
upstream, midstream and downstream (Fig. 1). Moreover, 
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Fig. 1. Map of Cairo-Suez road showing the locations of the 
studied area of wadi Hagul 
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Phytochemical screening 
Phytochemical screening was carried out to test the 

presence of tannins, flavonoids, terpenoids, saponins, 
quinones and anthroquinones in all plant extracts following 
standard protocol of Makkar (1993).    

 
Quantitative estimation of secondary metabolites 
Measurement of total phenolics and tannins 
The total phenolics and tannins were measured by using 

Folin-Ciocalteu method, based on the method described by 
Makkar et al. (1993). 

 
Measurement of condensed tannins (Proanthocyanidins) 
The total proanthocyanidins were determined by using 

vanillin reagent as described by Price et al. (1978). The 
absorbance was measured at 500 nm by a Shimadzu UV-
265 spectrophotometer (Japan). 

 
Extraction and estimation of total flavonoids content 
The aluminium chloride colorimetric method described 

by Harborne (1998) was used for determination of total 
flavonoids in the extracts. The total flavonoid contents were 
calculated as µg/g fresh weight from standard curve of 
quercetin. 

 
Determination of saponins 
The total saponins was calculated from the diosgenin 

standard solution by using vanillin reagent according to the 
method of Francis et al. (2002). 

 
Determination of glucosinolate 
Glucosinolate was determined by the spectro-

photometric method described by Makkar et al. (1993). 
 
Determination of cardiac gylcosides 
Cardiac glycoside content in the sample was evaluated 

using Buljet‘s reagent as described by El-Olemy (1994). 
 
Assay of phenylalanine ammonia-lyase activity (PAL) EC 

4.3.1.5   
The activity of PAL was assayed as described by He et al. 

(2001). The reaction mixture consisted of 100 μL crude 
enzyme extract and 900 μL of 6 μmol phenylalanine in 500 

mM TrisHCl buffer (pH 8.5). The mixture was incubated 
at 37 °C for 1 hr and measured spectrophotometrically at 
290 nm using UV-spectrophotometer (Spectronic 601, 
Milton Roy Company). PAL activity was expressed as mM 
of trans-cinnamic acid/g fresh weight/min. 

 
Total antioxidant capacity 
The total antioxidant capacity of the extracts was 

evaluated by the phosphomolybdenum method according 
to the procedure described by Prieto et al. (1999). 

 
Statistical analysis 
Statistical analysis was done by determining the variance 

and the means separated by Duncans multiple range test (p 
˃ 0.05) as described by Snedecor and Cochran (1980). The 
software SAS (SAS Institute, Cary, N.C.) were used for 
analysis. 

Results  

Characteristics of wadi Hagul habitats 
The restricted amounts of precipitation, associated with 

extremely high summer temperatures and high evaporation 
rates, create a harsh environment for vegetation in arid area, 
particularly at the Wadi’s edges within the study area. The 
high percentage of soil moisture content was detected 
during the wet period of April, which was related to the fall 
of rain season; however, it was significantly reduced in the 
dry season (August). The intensification of soil water deficit 
in wadi Hagul during summer, particularly at the area edges 
(Khattab et al., 2014), was concomitant with low 
precipitation and high temperature (Table 2).  

 
Seasonal qualitative and quantitative analysis of 

phytochemicals of Zilla spinosa parts inhabiting wadi Hagoul 
Seasonal variation pronounced in different qualitative 

phytochemical screening of crude aqueous extracts of Z. 
spinosa parts was done to detect the presence of secondary 
metabolites. The extracts of Zilla aerial portions and roots 
revealed the presence of phenols, flavonoids, triterpenoids, 
steroids, alkaloids, saponins, coumarins, glucosinolate, 
proanthocyanidines and cardiac glycosides. The best and 
more relevant observed results are assayed in the aqueous 
extracts, particularly during the dry season, which were 

Table 1. The meteorological data (climatic condition) of wadi Hagul during 2010-2014 
Mean maximum temp 

(°C) 
Mean minimum temp 

(°C) 
Rain fall mm/month Relative humidity  %  Months 

Wind velocity 
Km/h 

20 10 3.4 59 January 7.02 
21 11 3.7 58 February 7.65 
25 13 3.2 54 March 7.46 
28 16 17.7 47 April 8.36 
32 19 0 45 May 7.46 
36 22 0 48 June 8.81 
38 24 0.5 52 July 7.89 
38 24 0 54 August 7.78 
34 22 0 56 September 8.3 
30 19 0.2 58 October 8.56 
26 15 1.7 60 November 6.8 
22 11 3.9 62 December 6.21 
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Table 2. Soil reaction, electrical conductivity and chemical analysis of soil samples from wadi Hagol, during summer (sum) and spring (spr) 

Location 
% of soil water content Soluble cations meq CaCO3 % 

 
Spr Sum 

Mg2+ Na+ Ca2+ K+ 
Spr Sum Spr Sum Spr Sum Spr Sum Spr Sum 

Upstream 1.45 0.75 
0.86 2.45 2.80 8.10 2.06 2.94 0.214 0.226 7.9 15.5 
0.53 1.56 1.10 6.33 2.42 3.12 0.100 0.133 5.7 8.10 

Midstream 2.90 2.75 
1.98 4.16 5.43 12.86 5.40 6.24 0.214 0.346 17.3 19.3 
0.12 0.56 0.37 0.95 0.296 0.777 0.100 0.171 13.1 14.9 

Down 
stream 

0.90 0.36 
0.26 0.60 0.37 0.96 0.41 0.81 0.143 0.154 40.4 41.7 
0.73 0.21 0.10 0.68 0.15 0295 0.100 0.105 48.7 51.2 

 
 
Table 3.  Preliminary phytochemical screening of Zilla spinosa plants grown in different habitats of wadi Hagoul during spring and summer season 

Solvent Compound 
Spring Summer 

Root Shoot Root Shoot 

Water 

Phenolic ++ ve ++ ve ++ ve +++ ve 
Flavonoids + ve ++ ve + ve ++ ve 
Coumarins + ve + ve + ve ++ ve 

Triterpenoid + ve ++ ve + ve ++ ve 
Alkaloids + ve ++ ve + ve ++ ve 
Steroids + ve ++ ve + ve ++ ve 
Tannins + ve + ve + ve + ve 
Saponins ++ ve ++ ve +++ ve ++ ve 

Cardiac glycosides ++ ve +++ ve ++ ve +++ ve 
Glucosinolate ++ ve ++ ve ++ ve +++ ve 

Acid +ve + ve + ve + ve 

Ethy lalcohol 

Phenolic + ve ++ ve + ve ++ ve 
Flavonoids + ve ++ ve + ve ++ ve 
Coumarins + ve + ve + ve ++ ve 

Triterpenoid + ve + ve + ve + ve 
Alkaloids - ve - ve - ve - ve 
Steroids + ve + ve + ve + ve 
Tannins - ve - ve - ve - ve 
Saponins + ve + ve + ve + ve 

Cardiac glycosides + ve ++ ve + ve ++ ve 
Glucosinolate + ve ++ ve + ve ++ ve 

Acid + ve + ve + ve + ve 

Methyl alcohol 

Phenolic ++ ve ++ ve ++ ve +++ ve 
Flavonoids + ve ++ ve + ve ++ ve 
Coumarins + ve + ve + ve +++ ve 

Triterpenoid + ve + ve + ve + ve 
Alkaloids - ve - ve - ve - ve 
Steroids + ve + ve + ve + ve 
Tannins - ve - ve - ve - ve 
Saponins + ve + ve + ve + ve 

Cardiac glycosides + ve + ve + ve + ve 
Glucosinolate ++ ve ++ ve ++ ve ++ ve 

Acid +ve + ve + ve + ve 

Petroleum ether 

Phenolic + ve ++ ve + ve + ve 
Flavonoids + ve ++ ve + ve + ve 
Coumarins - ve - ve - ve - ve 

Triterpenoid + ve ++ ve + ve ++ ve 
Alkaloids - ve - ve - ve - ve 

Steroids + ve e + ve + ve 
Tannins - ve - ve - ve - ve 
Saponins + ve + ve + ve + ve 

Cardiac glycosides + ve + ve + ve + ve 
Glucosinolate + ve + ve + ve + ve 

Acid + ve + ve + ve + ve 
-ve = Negative results; + ve= Positive results; ++ve = Moderately positive results; +++ve =  strongly positive results 
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thereafter used in the quantification of the secondary 
metabolites (Table 3). The greater qualitative secondary 
metabolites contents were detected in Z. spinosa aerial 
portions as compared with their roots. Therefore, the 
secondary metabolites levels were measured in the aerial 
portions along wadi Hagul habitats. 

 
Quantitative analysis of secondary metabolites 
The important secondary metabolites such as phenolics, 

flavonoids, saponins, tannins, proanthocyanidines and 
glucosinolates were quantified by using spectrophotometric 
assay. 

 
Seasonal and spatial variation in total phenols 
Z. spinosa aerial portions accumulated higher amount of 

total phenols in dry summer season compared to those 
harvested in spring (Table 4). The greatest levels of phenols 
accumulation were observed in Zilla aerial portions 
inhabiting the edges of the wadi, particularly at the 
downstream locations, during the dry season. 

 
Seasonal and spatial variation in flavonoids 
The quantitative estimation of the seasonal and spatial 

changes in the total flavonoids illustrated that Zilla aerial 
portions exhibited greater levels of flavonoids during 
summer seasons (Table 4). The maximum levels of 
flavonoids were measured in Zilla aerial portions inhabiting 
upstream and downstream wadi Hagul during summer 
season. 

 
Seasonal and spatial variation in tannins 
Z. spinosa aerial portions attained higher tannins levels 

in the dry season, particularly at the edges of the wadi (Table 
4). The aerial portions of Zilla plants exhibited greater 
amounts of tannins during summer seasons. In addition, the 
maximum value of tannins level was attained in 

downstream inhabiting Zilla aerial portions during the 
summer season. 

 
Seasonal and spatial variation in proanthocyanidines 

(condensed tannins) 
The amount of pro-anthocyandines was significantly 

increased in Zilla aerial portions harvested in the dry season 
compared to those of spring. The maximum increase in the 
accumulation of pro-anthocyanidines was measured in Zilla 
aerial portions inhabiting the edges of wadi Hagul during 
dry periods (Table 4). However, the increment in the total 
pro-anthocynidines was more pronounced in Zilla 
inhabiting the downstream during summer season. 

Seasonal and spatial changes in saponins 
Saponins are the most common secondary metabolites 

accumulated in Zilla aerial portions (Table 5). It was 
noticed that the highest amount of saponins was observed 
in Zilla aerial portions inhabiting the downstream location 
followed by the first location during the dry season 
compared with this of the second stand. 

 
Seasonal and spatial changes of glucosinolates 
The total glucosinolates content increased significantly 

in summer harvested Zilla aerial portions particularly at the 
edges of wadi Hagul (Table 5). The maximum amount of 
glucosinolates was achieved in Zilla aerial portions located 
downstream the wadi (6318.42 μg/g dw). 

 
Seasonal and spatial variation in cardiac glycosides 
Data presented in Table 5 clearly indicated that the 

accumulation of total cardiac glycosides was greater in Zilla 
aerial portions during summer season. The maximum 
increase in cardiac glycosides was attained in Zilla aerial 
portions grown at the edges of wadi Hagul specially at the 
third location, in summer. 

Table 4. Seasonal changes in total phenols, flavonoids, total tannins and proanthocyanidines (µg/g dw) contents of Zilla spinosa aerial portions grown 
in different habitats of wadi Hagul 

Season Location 
Parameter (µg g-1) 

Total phenols Flavonoids Tannins Pro-anthocyanidines 

Spring 
Upstream 3623.74±75.63c 3386.10±174.62c 211.77±5.55d 242.65±1.63bc 

Midstream 2147.47±67.76d 876.67±133.67c 176.51±14.22e 558.82±1.63a 

Downstream 2723.23±36.5cd 2634.17±178.47d 224.02±4.66d 248.37±1.25bc 

Summer 
Upstream 5622.90±11.80b 5874.98±38.8b 295.20±4.115b 214.22±4.71c 

Midstream 4292.93±77.2c 1754.12±32.1de 248.00±12.31c 356.21±2.87b 

Downstream 8387.21±89.2a 6318.42±46.2a 520.95±6.44a 177.94±1.47c 
Each value is a mean of three replicates ± SD 
 
 Table 5.  Seasonal changes in glucosinalates, cardiac glycosides, saponins , the total antioxidant capacity and PAL activity of Zilla spinosa aerial 
portions grown in different habitats of wadi Hagul 

Season Location 
Parameter 

Saponins 
(µg g-1) 

Glucosinolates 
(µgg-1) 

% of cardiac 
glycosides 

Total antioxidant 
capacity (µg g-1) 

PAL (mM of trans- 
cinnamic acid/g FW/min) 

Spring 
Upstream 14762.00±48.01a 5276.87±38.8c 1.180 ±0.022a 0.020±0.0008c 0.70±0.067b 

Midstream 7084.00±29.14c 4819.24±38.7cd 0.38± 0.023bc 0.004±0.0004e 0.41±0.007c 
Downstream 9775.00±38.15b 5877.79±38.8b 0.54±0. 015b 0.010±0.0022d 0.66±0.01b 

Summer 
Upstream 5016.00±38.15e 5874.99±32.1b 0.58± 0.011b 0.043±0.0008a 0.81±0.007b 

Midstream 3696.00±38.14f 5754.12±38.8b 0.41±0.009bc 0.0274±0.0004b 0.51±0.008c 
Downstream 8844.00±38.10b 6318.42±23.5a 1.26± 0.004a 0.045±0.0.0004a 1.1±0.01a 

Each value is a mean of three replicates ± SD 
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Seasonal and spatial variation in PAL activity   
In addition, the increments in PAL activity was more 

pronounced in aerial portions inhabiting the edges of wadi 
Hagul particularly at the third downstream stand during 
summer followed by the first location during spring (Table 
5). 

 
Seasonal and spatial variation in the total antioxidant 

capacity 
The total antioxidant values of aqueous extracts of Zilla 

aerial portions were greater in the three investigated sites 
during summer season. It was obvious from the obtained 
data that the greatest magnitude of the total antioxidant 
value was measured in Zilla aerial portions inhabiting the 
third stand particularly during the dry period (Table 5). 

 

Discussion 

The mountainous desert is characterized by aggressive 
climatological condition. The restricted amounts of 
freshwater, in combination with extremely high summer 
temperatures and high evaporation rates, creates a harsh 
habitat for vegetation. Topography affects soil type and thus 
habitat and weather pattern including fluctuation in 
seasonal temperature and precipitation (Ruggiero et al., 
1994), as well as soil moisture level across arid environment 
(Walker, 2000). In addition, the spatial pattern plays a 
central role in plant community dynamics including 
succession, adaptation, maintenance of species density and 
competition, as well as biomass (Sofy and Mohamed, 2012). 
Woody plants exhibit marked seasonal metabolic 
fluctuations triggered by day length, light intensity, 
temperature extremes and thereby reduction in soil moister 
content and plant water status particularly during the dry 
season (Larcher, 2003; Ramakrishna and Ravishankar, 
2011). The synthesis and accumulation of secondary 
metabolites including phenols, flavonoids, saponins, 
tannins, glucosinolate and cardiac glycosids fluctuated 
seasonally in the arid environment inhabiting plants. 

The preliminary qualitative secondary metabolites 
screening of the crude extracts of Zilla was done to assess 
the presence of bioactive components. The stem and root 
extracts of Z. spinosa have revealed the presence of phenols, 
flavonoids, saponins, steroids, glucosinolate, cardiac 
glycosides, tannins and alkaloids, detected generally, in all 
used solvents. However, in the present investigation all the 
screened secondary metabolites were found to be better 
extracted by water. Seasonal variation was pronounced in 
different secondary metabolites content of Zilla inhabiting 
wadi Hagul. The environmental stressors pushed all 
metabolic processes towards the synthesis of secondary 
metabolites as isoprenoids, phenols, flavonoids or alkaloids 
due to the closure of stomata and consequently reduction in 
the endogenous CO2 level and the consumption of 
reduction equivalents (NADPH+H+) utilized in the CO2-
fixation via Calvin cycle (Ramakrishna and Ravishankar, 
2011; Al-Gabbiesh et al., 2015).  

In addition, the quantitative analysis indicated that 
phenols accumulated in relatively large amounts in Zilla 
spinosa aerial portions inhabiting the edges of wadi Hagul 
particularly during the dry season. This can be possibly be 

related to the depletion of soil moisture content at the edges 
of wadi Hagul and the unfavorable environmental 
conditions (high temperature and strong light radiation). 
The accumulation of phenolics in stressed plants may be 
due to the activation of their biosynthesis and/or inhibition 
of their oxidation, which could be an acclimation 
mechanism of the plant against stress (Kefeli et al., 2003). 
Likewise, water stress can stimulate the accumulation of 
phenolic compounds in desert plants in summer season by 
hydrolyzing the glycosides (Gehlot et al., 2011). Moreover, 
the spatial variations in phenols accumulation were parallel 
to the changes in PAL activity in Zilla aerial portions 
inhabiting different locations along wadi Hagul during 
spring and summer seasons. Arbona et al. (2013) reported 
that heat induced PAL activity and the production of 
phenolic and at the same time reduced their oxidation, 
contributing to heat stress acclimation. Polyphenol 
synthesis and accumulation is generally stimulated in 
response to biotic or abiotic stresses (Muthukumarasamy et 
al., 2000; Rajabbeigi et al., 2013; Patel and Patel, 2014). 
Phenolic compounds confer ROS scavenging ability 
(Pokorny et al., 2001; Saeed et al., 2012) and enhanced 
plant tolerance under harsh environmental conditions. 
Likewise, the longer exposure to stronger sunlight 
stimulated phenols biosynthesis (Sezai et al., 2008). 
Furthermore, deficiencies in nutrients in wadi Hagul 
habitats, particularly during summer, led to the 
accumulation of phenol precursor, phenyl propanoids and 
lignification (Dixon and Paiva, 1995) and thus induced 
plant acclimation against stress (Arbona et al., 2013).   

In addition, flavonoids are one of the main phenolic 
compounds of plants which have potent antioxidant 
activities (Bravo, 199; Nunes et al., 2012) and thus, they are 
involved in the protection of plants against stresses 
(Winkel-Shirley, 2001). Summer harvested Z. spinosa aerial 
portions attained greater amount of flavonoids particularly 
at the third location of Wadi Hagul (downstream). The 
increments in the total flavonoids during the dry hot season 
particularly at third site may be associated to the extent of 
environmental stressful conditions imposed by high 
temperature, low soil humidity and strong solar radiation. 
The climatic and ecological variations, such as the duration 
and intensity of sunlight, have significant effect on the 
nature and quality of secondary plant metabolites (Sezai et 
al., 2008). The total flavonoids and phenolic contents 
increased in Melilotus indicus and Lactuca sativa L. exposed 
to abiotic stresses (Ahmed et al., 2012; Rajabbeigi, et al., 
2013). Flavonoids are efficient antioxidant (Tahara, 2007) 
and able to neutralize the reactive oxygen species under 
stress conditions (Gould, 2004), so nullify the stress injuries 
of Z. spinosa subjected to temporal and spatial variations. 
Tecomella undulate accumulated greater amount of 
flavonoids during summer season (Patel and Patel, 2014). 
Flavonoids are involved in the resistance of plant and also 
provide a number of functions in the ecology of plants. 

 Saponins, like flavonoids, tannins and terpenes, are 
defensive secondary metabolites that allow plants to cope 
with the environmental conditions (storing and conserving 
water, resisting predators and surviving severe weather 
conditions (Harlev et al., 2012). Saponin is one of the most 
common compounds measured in Z. spinosa plants. The 
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to secondary metabolism, particularly of phenylpropanoid 
metabolism (Zon et al., 2002). 

The seasonal and spatial changes in the activity and total 
levels of antioxidants in Zilla aerial portions can be 
estimated. The greatest reducing antioxidant power 
measured in the third location harvested Zilla aerial 
portions during the dry period was concomitant with the 
increments in the magnitudes of the antioxidants such as 
phenols, flavonoids and tannins which may suggest the 
involvement of antioxidants in the main strategy of 
adaptation of Zilla to arid environment. Similar results have 
been reached by Ahmed et al. (2012) who observed 
increments in the total antioxidant capacity of Melilotus 
indicus extract harvested during the hot dry season, which 
might be due to the greater accumulation of antioxidants 
including phenols and flavonoids. Similarly, phenolic acids 
and flavonoids were the major contributors for the 
increments in the total antioxidant activity in Torilis 
leptophylla (Saeed et al., 2012). Phenols and flavonoids have 
been shown to be highly effective scavengers of most 
oxidizing molecules (Nunes et al., 2012). 

 

Conclusions 

The greatest accumulation in natural bioactive 
secondary metabolites which serve as antioxidants was 
attained in Z. spinosa experienced dry hot summer 
environment. Consequently, Z. spinosa is a promising new 
source of nutraceutical molecules which can be utilized in 
food and drug industries.  
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